• Je něco špatně v tomto záznamu ?

Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images

J. Matula, V. Polakova, J. Salplachta, M. Tesarova, T. Zikmund, M. Kaucka, I. Adameyko, J. Kaiser

. 2022 ; 12 (1) : 8728. [pub] 20220524

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018340

Grantová podpora
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy
CEITEC VUT-J-20-6477 Vysoké Učení Technické v Brně
FSI-S-20-6353 Vysoké Učení Technické v Brně
21-05146S Grantová Agentura České Republiky

The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018340
003      
CZ-PrNML
005      
20220804134720.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-022-12329-8 $2 doi
035    __
$a (PubMed)35610276
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Matula, Jan $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/000000033334956X
245    10
$a Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images / $c J. Matula, V. Polakova, J. Salplachta, M. Tesarova, T. Zikmund, M. Kaucka, I. Adameyko, J. Kaiser
520    9_
$a The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
650    _2
$a zvířata $7 D000818
650    _2
$a chrupavka $x diagnostické zobrazování $7 D002356
650    12
$a deep learning $7 D000077321
650    _2
$a vývojová biologie $7 D015509
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a myši $7 D051379
650    _2
$a neuronové sítě $7 D016571
650    _2
$a rentgenové záření $7 D014965
655    _2
$a časopisecké články $7 D016428
700    1_
$a Polakova, Veronika $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
700    1_
$a Salplachta, Jakub $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000201497843
700    1_
$a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000252007365
700    1_
$a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000329485198
700    1_
$a Kaucka, Marketa $u Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Ploen, Germany $1 https://orcid.org/0000000287819769
700    1_
$a Adameyko, Igor $u Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria $u Department of Physiology and Pharmacology, Karolinska Institutet, 17165, Stockholm, Sweden $1 https://orcid.org/0000000154710356
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic. jozef.kaiser@ceitec.vutbr.cz $1 https://orcid.org/000000027397125X
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 8728
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35610276 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804134714 $b ABA008
999    __
$a ok $b bmc $g 1822103 $s 1169583
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 12 $c 1 $d 8728 $e 20220524 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a LM2018110 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LM2018110 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CEITEC VUT-J-20-6477 $p Vysoké Učení Technické v Brně
GRA    __
$a FSI-S-20-6353 $p Vysoké Učení Technické v Brně
GRA    __
$a 21-05146S $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...