-
Je něco špatně v tomto záznamu ?
Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images
J. Matula, V. Polakova, J. Salplachta, M. Tesarova, T. Zikmund, M. Kaucka, I. Adameyko, J. Kaiser
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
CEITEC VUT-J-20-6477
Vysoké Učení Technické v Brně
FSI-S-20-6353
Vysoké Učení Technické v Brně
21-05146S
Grantová Agentura České Republiky
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- chrupavka diagnostické zobrazování MeSH
- deep learning * MeSH
- myši MeSH
- neuronové sítě MeSH
- počítačové zpracování obrazu metody MeSH
- rentgenové záření MeSH
- vývojová biologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
Department of Physiology and Pharmacology Karolinska Institutet 17165 Stockholm Sweden
Max Planck Institute for Evolutionary Biology August Thienemann Str 2 24306 Ploen Germany
Medical University of Vienna Spitalgasse 23 1090 Vienna Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018340
- 003
- CZ-PrNML
- 005
- 20220804134720.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-022-12329-8 $2 doi
- 035 __
- $a (PubMed)35610276
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Matula, Jan $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/000000033334956X
- 245 10
- $a Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images / $c J. Matula, V. Polakova, J. Salplachta, M. Tesarova, T. Zikmund, M. Kaucka, I. Adameyko, J. Kaiser
- 520 9_
- $a The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a chrupavka $x diagnostické zobrazování $7 D002356
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a vývojová biologie $7 D015509
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a rentgenové záření $7 D014965
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Polakova, Veronika $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
- 700 1_
- $a Salplachta, Jakub $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000201497843
- 700 1_
- $a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000252007365
- 700 1_
- $a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000329485198
- 700 1_
- $a Kaucka, Marketa $u Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Ploen, Germany $1 https://orcid.org/0000000287819769
- 700 1_
- $a Adameyko, Igor $u Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria $u Department of Physiology and Pharmacology, Karolinska Institutet, 17165, Stockholm, Sweden $1 https://orcid.org/0000000154710356
- 700 1_
- $a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic. jozef.kaiser@ceitec.vutbr.cz $1 https://orcid.org/000000027397125X
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 8728
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35610276 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804134714 $b ABA008
- 999 __
- $a ok $b bmc $g 1822103 $s 1169583
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 12 $c 1 $d 8728 $e 20220524 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a LM2018110 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LM2018110 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a CEITEC VUT-J-20-6477 $p Vysoké Učení Technické v Brně
- GRA __
- $a FSI-S-20-6353 $p Vysoké Učení Technické v Brně
- GRA __
- $a 21-05146S $p Grantová Agentura České Republiky
- LZP __
- $a Pubmed-20220720