-
Je něco špatně v tomto záznamu ?
Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors
J. Justa, V. Šmídl, A. Hamáček
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
FW01010189
Technology Agency of the Czech Republic
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
35632274
DOI
10.3390/s22103865
Knihovny.cz E-zdroje
- MeSH
- bérec MeSH
- chodci * MeSH
- deep learning * MeSH
- lidé MeSH
- nositelná elektronika * MeSH
- pohyb těles MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018368
- 003
- CZ-PrNML
- 005
- 20220804134729.0
- 007
- ta
- 008
- 220720s2022 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s22103865 $2 doi
- 035 __
- $a (PubMed)35632274
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Justa, Josef $u Department of Measurement and Technology, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic $1 https://orcid.org/0000000169137652
- 245 10
- $a Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors / $c J. Justa, V. Šmídl, A. Hamáček
- 520 9_
- $a The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a bérec $7 D007866
- 650 _2
- $a pohyb těles $7 D009038
- 650 12
- $a chodci $7 D000069636
- 650 12
- $a nositelná elektronika $7 D000076251
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Šmídl, Václav $u Reseach and Innovation Center, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic $1 https://orcid.org/0000000330276174
- 700 1_
- $a Hamáček, Aleš $u Department of Measurement and Technology, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 22, č. 10 (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35632274 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804134723 $b ABA008
- 999 __
- $a ok $b bmc $g 1822118 $s 1169611
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 22 $c 10 $e 20220519 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- GRA __
- $a FW01010189 $p Technology Agency of the Czech Republic
- LZP __
- $a Pubmed-20220720