• Je něco špatně v tomto záznamu ?

Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors

J. Justa, V. Šmídl, A. Hamáček

. 2022 ; 22 (10) : . [pub] 20220519

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018368

Grantová podpora
FW01010189 Technology Agency of the Czech Republic

The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018368
003      
CZ-PrNML
005      
20220804134729.0
007      
ta
008      
220720s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s22103865 $2 doi
035    __
$a (PubMed)35632274
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Justa, Josef $u Department of Measurement and Technology, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic $1 https://orcid.org/0000000169137652
245    10
$a Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors / $c J. Justa, V. Šmídl, A. Hamáček
520    9_
$a The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.
650    12
$a deep learning $7 D000077321
650    _2
$a lidé $7 D006801
650    _2
$a bérec $7 D007866
650    _2
$a pohyb těles $7 D009038
650    12
$a chodci $7 D000069636
650    12
$a nositelná elektronika $7 D000076251
655    _2
$a časopisecké články $7 D016428
700    1_
$a Šmídl, Václav $u Reseach and Innovation Center, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic $1 https://orcid.org/0000000330276174
700    1_
$a Hamáček, Aleš $u Department of Measurement and Technology, Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic
773    0_
$w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 22, č. 10 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35632274 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804134723 $b ABA008
999    __
$a ok $b bmc $g 1822118 $s 1169611
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 22 $c 10 $e 20220519 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
GRA    __
$a FW01010189 $p Technology Agency of the Czech Republic
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace