Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study

A. Ortiz, A. Hintze, R. Burnett, C. Gonzalez-Torres, S. Unger, D. Yang, J. Miao, M. Alda, BH. Mulsant

. 2022 ; 22 (1) : 288. [pub] 20220422

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018729

BACKGROUND: Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design. METHOD: This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness. DISCUSSION: This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018729
003      
CZ-PrNML
005      
20220804135043.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12888-022-03923-1 $2 doi
035    __
$a (PubMed)35459150
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Ortiz, Abigail $u Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Abigail.ortiz@utoronto.ca $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada. Abigail.ortiz@utoronto.ca $1 https://orcid.org/000000016886767X
245    10
$a Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study / $c A. Ortiz, A. Hintze, R. Burnett, C. Gonzalez-Torres, S. Unger, D. Yang, J. Miao, M. Alda, BH. Mulsant
520    9_
$a BACKGROUND: Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design. METHOD: This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness. DISCUSSION: This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.
650    _2
$a dospělí $7 D000328
650    12
$a bipolární porucha $x diagnóza $7 D001714
650    _2
$a kohortové studie $7 D015331
650    _2
$a lidé $7 D006801
650    _2
$a poruchy nálady $x diagnóza $7 D019964
650    _2
$a recidiva $7 D012008
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Hintze, Arend $u Department of Computer Science, Dalarna University, Dalarna, Sweden
700    1_
$a Burnett, Rachael $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada
700    1_
$a Gonzalez-Torres, Christina $u Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada
700    1_
$a Unger, Samantha $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada
700    1_
$a Yang, Dandan $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada $u Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
700    1_
$a Miao, Jingshan $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada $u Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
700    1_
$a Alda, Martin $u Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada $u National Institute of Mental Health, Klecany, Czech Republic
700    1_
$a Mulsant, Benoit H $u Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada $u Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada
773    0_
$w MED00008204 $t BMC psychiatry $x 1471-244X $g Roč. 22, č. 1 (2022), s. 288
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35459150 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135036 $b ABA008
999    __
$a ok $b bmc $g 1822374 $s 1169972
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 22 $c 1 $d 288 $e 20220422 $i 1471-244X $m BMC psychiatry $n BMC Psychiatry $x MED00008204
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...