-
Je něco špatně v tomto záznamu ?
Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging
M. Tesařová, L. Mancini, E. Mauri, G. Aljančič, M. Năpăruş-Aljančič, R. Kostanjšek, L. Bizjak Mali, T. Zikmund, M. Kaucká, F. Papi, J. Goyens, A. Bouchnita, A. Hellander, I. Adameyko, J. Kaiser
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral Open Access
od 2012
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
PubMed Central
od 2012
Europe PubMed Central
od 2012
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-01-01
Oxford Journals Open Access Collection
od 2011
ROAD: Directory of Open Access Scholarly Resources
od 2012
- MeSH
- Proteidae * MeSH
- rentgenové záření MeSH
- tma MeSH
- Urodela MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.
Department of Information Technology Uppsala University Box 337 Uppsala 755 01 Sweden
Department of Integrative Biology University of Texas at Austin Austin 78712 Texas USA
Institute Tular Cave Laboratory Oldhamska 8a Kranj 4000 Slovenia
Karolinska Institutet Department of Physiology and Pharmacology Solnavagen 9 17165 Solna Sweden
Laboratory of Functional Morphology University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
Max Planck Institute for Evolutionary Biology August Thienemann Str 2 Plon 24306 Germany
Speleovivarium Erwin Pichl Adriatic Speleology Society Via Guido Reni 2 C Trieste 34123 Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018866
- 003
- CZ-PrNML
- 005
- 20220804135140.0
- 007
- ta
- 008
- 220720s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gigascience/giac030 $2 doi
- 035 __
- $a (PubMed)35380661
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tesařová, Markéta $u Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000252007365
- 245 10
- $a Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging / $c M. Tesařová, L. Mancini, E. Mauri, G. Aljančič, M. Năpăruş-Aljančič, R. Kostanjšek, L. Bizjak Mali, T. Zikmund, M. Kaucká, F. Papi, J. Goyens, A. Bouchnita, A. Hellander, I. Adameyko, J. Kaiser
- 520 9_
- $a BACKGROUND: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a tma $7 D003624
- 650 12
- $a Proteidae $7 D011483
- 650 _2
- $a Urodela $7 D014562
- 650 _2
- $a rentgenové záření $7 D014965
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mancini, Lucia $u Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste, 34149, Italy $1 https://orcid.org/0000000324163464
- 700 1_
- $a Mauri, Edgardo $u Speleovivarium Erwin Pichl, Adriatic Speleology Society, Via Guido Reni, 2/C, Trieste, 34123, Italy
- 700 1_
- $a Aljančič, Gregor $u Institute Tular Cave Laboratory, Oldhamska 8a, Kranj, 4000, Slovenia
- 700 1_
- $a Năpăruş-Aljančič, Magdalena $u Institute Tular Cave Laboratory, Oldhamska 8a, Kranj, 4000, Slovenia $u Research Centre of the Slovenian Academy of Sciences and Arts: Karst Research Institute, Titov trg 2, Postojna, 6230, Slovenia
- 700 1_
- $a Kostanjšek, Rok $u University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana, 1000, Slovenia $1 https://orcid.org/0000000183771182
- 700 1_
- $a Bizjak Mali, Lilijana $u University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana, 1000, Slovenia $1 https://orcid.org/0000000170279535
- 700 1_
- $a Zikmund, Tomáš $u Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000329485198
- 700 1_
- $a Kaucká, Markéta $u Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plon, 24306, Germany $1 https://orcid.org/0000000287819769
- 700 1_
- $a Papi, Federica $u Speleovivarium Erwin Pichl, Adriatic Speleology Society, Via Guido Reni, 2/C, Trieste, 34123, Italy
- 700 1_
- $a Goyens, Jana $u Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium $1 https://orcid.org/000000030176884X
- 700 1_
- $a Bouchnita, Anass $u Department of Information Technology, Uppsala University, Box 337, Uppsala, 755 01, Sweden $u Department of Integrative Biology, University of Texas at Austin, Austin, 78712, Texas, USA $1 https://orcid.org/0000000227296484
- 700 1_
- $a Hellander, Andreas $u Department of Information Technology, Uppsala University, Box 337, Uppsala, 755 01, Sweden $1 https://orcid.org/0000000172737923
- 700 1_
- $a Adameyko, Igor $u Medical University of Vienna, Center for Brain Research, Department of Neuroimmunology, Spitalgasse 4, 1090 Vienna, Austria $u Karolinska Institutet, Department of Physiology and Pharmacology, Solnavagen 9, 17165 Solna, Sweden $1 https://orcid.org/0000000154710356
- 700 1_
- $a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/000000027397125X
- 773 0_
- $w MED00186214 $t GigaScience $x 2047-217X $g Roč. 11, č. - (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35380661 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804135133 $b ABA008
- 999 __
- $a ok $b bmc $g 1822452 $s 1170109
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 11 $c - $e 20220405 $i 2047-217X $m GigaScience $n Gigascience $x MED00186214
- LZP __
- $a Pubmed-20220720