• Something wrong with this record ?

Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia

RL. Nielsen, BO. Wolthers, M. Helenius, BK. Albertsen, L. Clemmensen, K. Nielsen, J. Kanerva, R. Niinimäki, TL. Frandsen, A. Attarbaschi, S. Barzilai, A. Colombini, G. Escherich, D. Aytan-Aktug, HC. Liu, A. Möricke, S. Samarasinghe, IM. van der...

. 2022 ; 44 (3) : e628-e636. [pub] 20220401

Language English Country United States

Document type Journal Article

Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.

Bioinformatics

Center for Biological Sequence Analysis Technical University of Denmark

Children's Hospital Helsinki University Central Hospital University of Helsinki Helsinki

Clinic of Pediatric Hematology and Oncology University Medical Center Eppendorf Hamburg

Department of Applied Mathematics and Computer Science Kgs Lyngby

Department of Pediatric Hematology and Oncology Hannover Medical School Hannover Germany

Department of Pediatric Hematology and Oncology St Anna Children's Hospital and Department of Pediatric and Adolescent Medicine Medical University of Vienna Wien Austria

Department of Pediatric Hematology Oncology University Hospital Motol Prague Czech Republic

Department of Pediatrics and Adolescent Medicine Aarhus University Hospital Aarhus Denmark

Department of Pediatrics and Adolescent Medicine University Hospital Rigshospitalet

Department of Pediatrics Christian Albrechts University Kiel and University Medical Center Schleswig Holstein Kiel

Department of Pediatrics Ospedale San Gerardo University of Milano Bicocca Fondazione MBBM Monza Italy

Departments of Health Technology

Division of Pediatric Hematology Oncology Mackay Memorial Hospital Taipei Taiwan

Dutch Childhood Oncology Group The Hague and Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands

Great Ormond Street Hospital for Children London UK

Institute of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen

Oulu University Hospital Department of Children and Adolescents and University of Oulu PEDEGO Research Unit Oulu Finland

Pediatric Hematology and Oncology Schneider Children's Medical Center of Israel Petah Tikva Israel and Sackler Faculty of Medicine Tel Aviv University Tel Aviv Yafo Israel

Sino Danish Center for Education and Research University of Chinese Academy of Sciences Huairou China

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019005
003      
CZ-PrNML
005      
20220804135248.0
007      
ta
008      
220720s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1097/MPH.0000000000002292 $2 doi
035    __
$a (PubMed)35226426
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Nielsen, Rikke L $u Departments of Health Technology $u Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet $u Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Huairou, China
245    10
$a Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia / $c RL. Nielsen, BO. Wolthers, M. Helenius, BK. Albertsen, L. Clemmensen, K. Nielsen, J. Kanerva, R. Niinimäki, TL. Frandsen, A. Attarbaschi, S. Barzilai, A. Colombini, G. Escherich, D. Aytan-Aktug, HC. Liu, A. Möricke, S. Samarasinghe, IM. van der Sluis, M. Stanulla, M. Tulstrup, R. Yadav, E. Zapotocka, K. Schmiegelow, R. Gupta
520    9_
$a Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.
650    12
$a protinádorové látky $x škodlivé účinky $7 D000970
650    12
$a asparaginasa $x škodlivé účinky $7 D001215
650    _2
$a dítě $7 D002648
650    _2
$a celogenomová asociační studie $7 D055106
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    12
$a pankreatitida $x chemicky indukované $x genetika $7 D010195
650    12
$a akutní lymfatická leukemie $x farmakoterapie $x genetika $7 D054198
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wolthers, Benjamin O $u Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
700    1_
$a Helenius, Marianne $u Departments of Health Technology
700    1_
$a Albertsen, Birgitte K $u Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
700    1_
$a Clemmensen, Line $u Department of Applied Mathematics and Computer Science, Kgs. Lyngby
700    1_
$a Nielsen, Kasper $u Center for Biological Sequence Analysis, Technical University of Denmark
700    1_
$a Kanerva, Jukka $u Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki
700    1_
$a Niinimäki, Riitta $u Oulu University Hospital, Department of Children and Adolescents, and University of Oulu, PEDEGO Research Unit, Oulu, Finland
700    1_
$a Frandsen, Thomas L $u Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
700    1_
$a Attarbaschi, Andishe $u Department of Pediatric Hematology and Oncology, St Anna Children's Hospital and Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Wien, Austria
700    1_
$a Barzilai, Shlomit $u Pediatric Hematology and Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
700    1_
$a Colombini, Antonella $u Department of Pediatrics, Ospedale San Gerardo, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
700    1_
$a Escherich, Gabriele $u Clinic of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg
700    1_
$a Aytan-Aktug, Derya $u Bioinformatics
700    1_
$a Liu, Hsi-Che $u Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
700    1_
$a Möricke, Anja $u Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel
700    1_
$a Samarasinghe, Sujith $u Great Ormond Street Hospital for Children, London, UK
700    1_
$a van der Sluis, Inge M $u Dutch Childhood Oncology Group, The Hague and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
700    1_
$a Stanulla, Martin $u Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
700    1_
$a Tulstrup, Morten $u Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet
700    1_
$a Yadav, Rachita $u Center for Biological Sequence Analysis, Technical University of Denmark
700    1_
$a Zapotocka, Ester $u Department of Pediatric Hematology/Oncology, University Hospital Motol, Prague, Czech Republic
700    1_
$a Schmiegelow, Kjeld $u Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet $u Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
700    1_
$a Gupta, Ramneek $u Departments of Health Technology
773    0_
$w MED00002880 $t Journal of pediatric hematology/oncology $x 1536-3678 $g Roč. 44, č. 3 (2022), s. e628-e636
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35226426 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135241 $b ABA008
999    __
$a ok $b bmc $g 1822559 $s 1170248
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 44 $c 3 $d e628-e636 $e 20220401 $i 1536-3678 $m Journal of pediatric hematology/oncology $n J Pediatr Hematol Oncol $x MED00002880
LZP    __
$a Pubmed-20220720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...