-
Something wrong with this record ?
Comparison of Actinobacteria communities from human-impacted and pristine karst caves
A. Buresova-Faitova, J. Kopecky, M. Sagova-Mareckova, L. Alonso, F. Vautrin, Y. Moënne-Loccoz, V. Rodriguez-Nava
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2012
Free Medical Journals
from 2012
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2012-03-01
Open Access Digital Library
from 2012-01-01
Open Access Digital Library
from 2012-01-01
Medline Complete (EBSCOhost)
from 2014-04-01
Health & Medicine (ProQuest)
from 2012-03-01
Wiley-Blackwell Open Access Titles
from 2012
ROAD: Directory of Open Access Scholarly Resources
from 2012
PubMed
35478281
DOI
10.1002/mbo3.1276
Knihovny.cz E-resources
- MeSH
- Actinobacteria * genetics MeSH
- Bacteria MeSH
- Phylogeny MeSH
- Caves * microbiology MeSH
- Humans MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Calcium Carbonate MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species-level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22019441
- 003
- CZ-PrNML
- 005
- 20220804135648.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mbo3.1276 $2 doi
- 035 __
- $a (PubMed)35478281
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Buresova-Faitova, Andrea $u CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France $u Department of Ecology, Faculty of Science, Charles University in Prague, Prague 2, Prague, Czech Republic $u Laboratory for Epidemiology and Ecology of Microorganisms, Crop Research Institute, Praha, Czech Republic $1 https://orcid.org/0000000187798702
- 245 10
- $a Comparison of Actinobacteria communities from human-impacted and pristine karst caves / $c A. Buresova-Faitova, J. Kopecky, M. Sagova-Mareckova, L. Alonso, F. Vautrin, Y. Moënne-Loccoz, V. Rodriguez-Nava
- 520 9_
- $a Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species-level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.
- 650 12
- $a Actinobacteria $x genetika $7 D039903
- 650 _2
- $a Bacteria $7 D001419
- 650 _2
- $a uhličitan vápenatý $7 D002119
- 650 12
- $a jeskyně $x mikrobiologie $7 D059552
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a RNA ribozomální 16S $x genetika $7 D012336
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kopecky, Jan $u Laboratory for Epidemiology and Ecology of Microorganisms, Crop Research Institute, Praha, Czech Republic $1 https://orcid.org/000000023437257X $7 xx0108100
- 700 1_
- $a Sagova-Mareckova, Marketa $u Laboratory for Epidemiology and Ecology of Microorganisms, Crop Research Institute, Praha, Czech Republic $1 https://orcid.org/0000000203318570 $7 xx0095954
- 700 1_
- $a Alonso, Lise $u CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France $1 https://orcid.org/0000000241379876
- 700 1_
- $a Vautrin, Florian $u CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France $1 https://orcid.org/0000000305216057
- 700 1_
- $a Moënne-Loccoz, Yvan $u CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France $1 https://orcid.org/0000000298171953
- 700 1_
- $a Rodriguez-Nava, Veronica $u CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France $1 https://orcid.org/0000000170832441
- 773 0_
- $w MED00184561 $t MicrobiologyOpen $x 2045-8827 $g Roč. 11, č. 2 (2022), s. e1276
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35478281 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804135641 $b ABA008
- 999 __
- $a ok $b bmc $g 1822864 $s 1170684
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 11 $c 2 $d e1276 $e - $i 2045-8827 $m MicrobiologyOpen $n Microbiologyopen $x MED00184561
- LZP __
- $a Pubmed-20220720