• Je něco špatně v tomto záznamu ?

New methods for multiple testing in permutation inference for the general linear model

T. Mrkvička, M. Myllymäki, M. Kuronen, NN. Narisetty

. 2022 ; 41 (2) : 276-297. [pub] 20211023

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019463

Permutation methods are commonly used to test the significance of regressors of interest in general linear models (GLMs) for functional (image) data sets, in particular for neuroimaging applications as they rely on mild assumptions. Permutation inference for GLMs typically consists of three parts: choosing a relevant test statistic, computing pointwise permutation tests, and applying a multiple testing correction. We propose new multiple testing methods as an alternative to the commonly used maximum value of test statistics across the image. The new methods improve power and robustness against inhomogeneity of the test statistic across its domain. The methods rely on sorting the permuted functional test statistics based on pointwise rank measures; still, they can be implemented even for large data. The performance of the methods is demonstrated through a designed simulation experiment and an example of brain imaging data. We developed the R package GET, which can be used for the computation of the proposed procedures.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019463
003      
CZ-PrNML
005      
20220804135701.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/sim.9236 $2 doi
035    __
$a (PubMed)34687243
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Mrkvička, Tomáš $u Department of Applied Mathematics and Informatics, University of South Bohemia, České Budějovice, Czech Republic $1 https://orcid.org/0000000316132780
245    10
$a New methods for multiple testing in permutation inference for the general linear model / $c T. Mrkvička, M. Myllymäki, M. Kuronen, NN. Narisetty
520    9_
$a Permutation methods are commonly used to test the significance of regressors of interest in general linear models (GLMs) for functional (image) data sets, in particular for neuroimaging applications as they rely on mild assumptions. Permutation inference for GLMs typically consists of three parts: choosing a relevant test statistic, computing pointwise permutation tests, and applying a multiple testing correction. We propose new multiple testing methods as an alternative to the commonly used maximum value of test statistics across the image. The new methods improve power and robustness against inhomogeneity of the test statistic across its domain. The methods rely on sorting the permuted functional test statistics based on pointwise rank measures; still, they can be implemented even for large data. The performance of the methods is demonstrated through a designed simulation experiment and an example of brain imaging data. We developed the R package GET, which can be used for the computation of the proposed procedures.
650    12
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    _2
$a lineární modely $7 D016014
650    12
$a neurozobrazování $7 D059906
650    _2
$a výzkumný projekt $7 D012107
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Myllymäki, Mari $u Natural Resources Institute Finland (Luke), Helsinki, Finland $1 https://orcid.org/0000000227137088
700    1_
$a Kuronen, Mikko $u Natural Resources Institute Finland (Luke), Helsinki, Finland $1 https://orcid.org/0000000280897895
700    1_
$a Narisetty, Naveen Naidu $u Department of Statistics, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA $1 https://orcid.org/0000000285525580
773    0_
$w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 41, č. 2 (2022), s. 276-297
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34687243 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135655 $b ABA008
999    __
$a ok $b bmc $g 1822882 $s 1170706
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 41 $c 2 $d 276-297 $e 20211023 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...