-
Je něco špatně v tomto záznamu ?
New methods for multiple testing in permutation inference for the general linear model
T. Mrkvička, M. Myllymäki, M. Kuronen, NN. Narisetty
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34687243
DOI
10.1002/sim.9236
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- lineární modely MeSH
- mozek * diagnostické zobrazování MeSH
- neurozobrazování * MeSH
- počítačová simulace MeSH
- výzkumný projekt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Permutation methods are commonly used to test the significance of regressors of interest in general linear models (GLMs) for functional (image) data sets, in particular for neuroimaging applications as they rely on mild assumptions. Permutation inference for GLMs typically consists of three parts: choosing a relevant test statistic, computing pointwise permutation tests, and applying a multiple testing correction. We propose new multiple testing methods as an alternative to the commonly used maximum value of test statistics across the image. The new methods improve power and robustness against inhomogeneity of the test statistic across its domain. The methods rely on sorting the permuted functional test statistics based on pointwise rank measures; still, they can be implemented even for large data. The performance of the methods is demonstrated through a designed simulation experiment and an example of brain imaging data. We developed the R package GET, which can be used for the computation of the proposed procedures.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22019463
- 003
- CZ-PrNML
- 005
- 20220804135701.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/sim.9236 $2 doi
- 035 __
- $a (PubMed)34687243
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Mrkvička, Tomáš $u Department of Applied Mathematics and Informatics, University of South Bohemia, České Budějovice, Czech Republic $1 https://orcid.org/0000000316132780
- 245 10
- $a New methods for multiple testing in permutation inference for the general linear model / $c T. Mrkvička, M. Myllymäki, M. Kuronen, NN. Narisetty
- 520 9_
- $a Permutation methods are commonly used to test the significance of regressors of interest in general linear models (GLMs) for functional (image) data sets, in particular for neuroimaging applications as they rely on mild assumptions. Permutation inference for GLMs typically consists of three parts: choosing a relevant test statistic, computing pointwise permutation tests, and applying a multiple testing correction. We propose new multiple testing methods as an alternative to the commonly used maximum value of test statistics across the image. The new methods improve power and robustness against inhomogeneity of the test statistic across its domain. The methods rely on sorting the permuted functional test statistics based on pointwise rank measures; still, they can be implemented even for large data. The performance of the methods is demonstrated through a designed simulation experiment and an example of brain imaging data. We developed the R package GET, which can be used for the computation of the proposed procedures.
- 650 12
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární modely $7 D016014
- 650 12
- $a neurozobrazování $7 D059906
- 650 _2
- $a výzkumný projekt $7 D012107
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Myllymäki, Mari $u Natural Resources Institute Finland (Luke), Helsinki, Finland $1 https://orcid.org/0000000227137088
- 700 1_
- $a Kuronen, Mikko $u Natural Resources Institute Finland (Luke), Helsinki, Finland $1 https://orcid.org/0000000280897895
- 700 1_
- $a Narisetty, Naveen Naidu $u Department of Statistics, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA $1 https://orcid.org/0000000285525580
- 773 0_
- $w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 41, č. 2 (2022), s. 276-297
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34687243 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804135655 $b ABA008
- 999 __
- $a ok $b bmc $g 1822882 $s 1170706
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 41 $c 2 $d 276-297 $e 20211023 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
- LZP __
- $a Pubmed-20220720