Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Validating Intelligent Automation Systems in Pharmacovigilance: Insights from Good Manufacturing Practices

K. Huysentruyt, O. Kjoersvik, P. Dobracki, E. Savage, E. Mishalov, M. Cherry, E. Leonard, R. Taylor, B. Patel, D. Abatemarco

. 2021 ; 44 (3) : 261-272. [pub] 20210201

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019713
E-zdroje Online Plný text

NLK ProQuest Central od 2008-06-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 2008-06-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2008-06-01 do Před 1 rokem

Pharmacovigilance is the science of monitoring the effects of medicinal products to identify and evaluate potential adverse reactions and provide necessary and timely risk mitigation measures. Intelligent automation technologies have a strong potential to automate routine work and to balance resource use across safety risk management and other pharmacovigilance activities. While emerging technologies such as artificial intelligence (AI) show great promise for improving pharmacovigilance with their capability to learn based on data inputs, existing validation guidelines should be augmented to verify intelligent automation systems. While the underlying validation requirements largely remain the same, additional activities tailored to intelligent automation are needed to document evidence that the system is fit for purpose. We propose three categories of intelligent automation systems, ranging from rule-based systems to dynamic AI-based systems, and each category needs a unique validation approach. We expand on the existing good automated manufacturing practices, which outline a risk-based approach to artificially intelligent static systems. Our framework provides pharmacovigilance professionals with the knowledge to lead technology implementations within their organizations with considerations given to the building, implementation, validation, and maintenance of assistive technology systems. Successful pharmacovigilance professionals will play an increasingly active role in bridging the gap between business operations and technical advancements to ensure inspection readiness and compliance with global regulatory authorities.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019713
003      
CZ-PrNML
005      
20220804135929.0
007      
ta
008      
220720s2021 nz f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s40264-020-01030-2 $2 doi
035    __
$a (PubMed)33523400
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Huysentruyt, Kristof $u Patient Safety, UCB, Brussels, Belgium. Kristof.Huysentruyt@ucb.com $1 https://orcid.org/0000000226419382
245    10
$a Validating Intelligent Automation Systems in Pharmacovigilance: Insights from Good Manufacturing Practices / $c K. Huysentruyt, O. Kjoersvik, P. Dobracki, E. Savage, E. Mishalov, M. Cherry, E. Leonard, R. Taylor, B. Patel, D. Abatemarco
520    9_
$a Pharmacovigilance is the science of monitoring the effects of medicinal products to identify and evaluate potential adverse reactions and provide necessary and timely risk mitigation measures. Intelligent automation technologies have a strong potential to automate routine work and to balance resource use across safety risk management and other pharmacovigilance activities. While emerging technologies such as artificial intelligence (AI) show great promise for improving pharmacovigilance with their capability to learn based on data inputs, existing validation guidelines should be augmented to verify intelligent automation systems. While the underlying validation requirements largely remain the same, additional activities tailored to intelligent automation are needed to document evidence that the system is fit for purpose. We propose three categories of intelligent automation systems, ranging from rule-based systems to dynamic AI-based systems, and each category needs a unique validation approach. We expand on the existing good automated manufacturing practices, which outline a risk-based approach to artificially intelligent static systems. Our framework provides pharmacovigilance professionals with the knowledge to lead technology implementations within their organizations with considerations given to the building, implementation, validation, and maintenance of assistive technology systems. Successful pharmacovigilance professionals will play an increasingly active role in bridging the gap between business operations and technical advancements to ensure inspection readiness and compliance with global regulatory authorities.
650    12
$a umělá inteligence $7 D001185
650    _2
$a automatizace $7 D001331
650    _2
$a lidé $7 D006801
650    12
$a farmakovigilance $7 D060735
650    _2
$a řízení rizik $7 D012308
650    _2
$a technologie $7 D013672
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kjoersvik, Oeystein $u R&D IT, MSD, Prague, Czech Republic
700    1_
$a Dobracki, Pawel $u RGITSC Software Validation, Roche Polska Sp. z o.o., Warsaw, Poland
700    1_
$a Savage, Elizabeth $u Global Medical Organization, Janssen Research & Development, LLC a division of Johnson & Johnson, Horsham, PA, USA
700    1_
$a Mishalov, Ellen $u PV Information Management, Astellas, Chicago, IL, USA
700    1_
$a Cherry, Mark $u Information Technology, AstraZeneca, Macclesfield, UK
700    1_
$a Leonard, Eileen $u WorldWide Patient Safety, Bristol-Myers Squibb Company, Princeton, NJ, USA
700    1_
$a Taylor, Robert $u Safety Management, Global Regulatory Affairs and, Merck & Co., Inc., Kenilworth, NJ, USA
700    1_
$a Patel, Bhavin $u Worldwide Safety, Pfizer Inc, Peapack, NJ, USA
700    1_
$a Abatemarco, Danielle $u WorldWide Patient Safety, Bristol-Myers Squibb Company, Princeton, NJ, USA
773    0_
$w MED00001449 $t Drug safety $x 1179-1942 $g Roč. 44, č. 3 (2021), s. 261-272
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33523400 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135922 $b ABA008
999    __
$a ok $b bmc $g 1823072 $s 1170956
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 44 $c 3 $d 261-272 $e 20210201 $i 1179-1942 $m Drug safety $n Drug Saf $x MED00001449
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...