Effective identification of previously implausible safety signals is a core component of successful pharmacovigilance. Timely, reliable, and efficient data ingestion and related processing are critical to this. The term 'black swan events' was coined by Taleb to describe events with three attributes: unpredictability, severe and widespread consequences, and retrospective bias. These rare events are not well understood at their emergence but are often rationalized in retrospect as predictable. Pharmacovigilance strives to rapidly respond to potential black swan events associated with medicine or vaccine use. Machine learning (ML) is increasingly being explored in data ingestion tasks. In contrast to rule-based automation approaches, ML can use historical data (i.e., 'training data') to effectively predict emerging data patterns and support effective data intake, processing, and organisation. At first sight, this reliance on previous data might be considered a limitation when building ML models for effective data ingestion in systems that look to focus on the identification of potential black swan events. We argue that, first, some apparent black swan events-although unexpected medically-will exhibit data attributes similar to those of other safety data and not prove algorithmically unpredictable, and, second, standard and emerging ML approaches can still be robust to such data outliers with proper awareness and consideration in ML system design and with the incorporation of specific mitigatory and support strategies. We argue that effective approaches to managing data on potential black swan events are essential for trust and outline several strategies to address data on potential black swan events during data ingestion.
- MeSH
- Automation MeSH
- Pharmacovigilance * MeSH
- Humans MeSH
- Retrospective Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Pharmacovigilance is the science of monitoring the effects of medicinal products to identify and evaluate potential adverse reactions and provide necessary and timely risk mitigation measures. Intelligent automation technologies have a strong potential to automate routine work and to balance resource use across safety risk management and other pharmacovigilance activities. While emerging technologies such as artificial intelligence (AI) show great promise for improving pharmacovigilance with their capability to learn based on data inputs, existing validation guidelines should be augmented to verify intelligent automation systems. While the underlying validation requirements largely remain the same, additional activities tailored to intelligent automation are needed to document evidence that the system is fit for purpose. We propose three categories of intelligent automation systems, ranging from rule-based systems to dynamic AI-based systems, and each category needs a unique validation approach. We expand on the existing good automated manufacturing practices, which outline a risk-based approach to artificially intelligent static systems. Our framework provides pharmacovigilance professionals with the knowledge to lead technology implementations within their organizations with considerations given to the building, implementation, validation, and maintenance of assistive technology systems. Successful pharmacovigilance professionals will play an increasingly active role in bridging the gap between business operations and technical advancements to ensure inspection readiness and compliance with global regulatory authorities.
- MeSH
- Automation MeSH
- Pharmacovigilance * MeSH
- Humans MeSH
- Risk Management MeSH
- Technology MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH