-
Je něco špatně v tomto záznamu ?
Simulation and experimental verification of ambient neutron doses in a pencil beam scanning proton therapy room as a function of treatment plan parameters
O. Van Hoey, L. Stolarczyk, J. Lillhök, L. Eliasson, N. Mojzeszek, M. Liszka, A. Alkhiat, V. Mares, F. Trompier, S. Trinkl, I. Martínez-Rovira, M. Romero-Expósito, C. Domingo, O. Ploc, R. Harrison, P. Olko
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
PubMed Central
od 2011
Europe PubMed Central
od 2011
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
PubMed
36158693
DOI
10.3389/fonc.2022.903537
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.
Belgian Nuclear Research Center Mol Belgium
Danish Centre for Particle Therapy Aarhus University Hospital Aarhus Denmark
Departament de Física Universitat Autònoma de Barcelona Bellaterra Spain
Department of Physics Royal Institute of Technology Stockholm Sweden
Faculty of Medical Sciences University of Newcastle upon Tyne Newcastle Upon Tyne United Kingdom
Federal Office for Radiation Protection Neuherberg Germany
Helmholtz Zentrum München Institute of Radiation Medicine Neuherberg Germany
Institut de Radioprotection et de Sûreté Nucléaire PSE Santé Fontenay aux Roses France
Institute of Nuclear Physics Polish Academy of Sciences Krakow Poland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22023344
- 003
- CZ-PrNML
- 005
- 20221031095249.0
- 007
- ta
- 008
- 221010s2022 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fonc.2022.903537 $2 doi
- 035 __
- $a (PubMed)36158693
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Van Hoey, Olivier $u Belgian Nuclear Research Center (SCK CEN), Institute for Environment, Health and Safety (EHS), Mol, Belgium
- 245 10
- $a Simulation and experimental verification of ambient neutron doses in a pencil beam scanning proton therapy room as a function of treatment plan parameters / $c O. Van Hoey, L. Stolarczyk, J. Lillhök, L. Eliasson, N. Mojzeszek, M. Liszka, A. Alkhiat, V. Mares, F. Trompier, S. Trinkl, I. Martínez-Rovira, M. Romero-Expósito, C. Domingo, O. Ploc, R. Harrison, P. Olko
- 520 9_
- $a Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Stolarczyk, Liliana $u Danish Centre for Particle Therapy, Aarhus University Hospital (AUH), Aarhus, Denmark $u Institute of Nuclear Physics, Polish Academy of Sciences, (IFJ PAN), Krakow, Poland $u The Skandion Clinic, Uppsala, Sweden
- 700 1_
- $a Lillhök, Jan $u Swedish Radiation Safety Authority, Solna, Sweden
- 700 1_
- $a Eliasson, Linda $u Department of Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
- 700 1_
- $a Mojzeszek, Natalia $u Institute of Nuclear Physics, Polish Academy of Sciences, (IFJ PAN), Krakow, Poland
- 700 1_
- $a Liszka, Malgorzata $u Institute of Nuclear Physics, Polish Academy of Sciences, (IFJ PAN), Krakow, Poland $u The Skandion Clinic, Uppsala, Sweden
- 700 1_
- $a Alkhiat, Ali $u The Skandion Clinic, Uppsala, Sweden $u Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- 700 1_
- $a Mares, Vladimir $u Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
- 700 1_
- $a Trompier, François $u Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-Santé, Fontenay-aux-Roses, France
- 700 1_
- $a Trinkl, Sebastian $u Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany $u Federal Office for Radiation Protection, Neuherberg, Germany
- 700 1_
- $a Martínez-Rovira, Immaculada $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 700 1_
- $a Romero-Expósito, Maite $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 700 1_
- $a Domingo, Carles $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 700 1_
- $a Ploc, Ondrej $u Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences (CAS), Prague, Czechia
- 700 1_
- $a Harrison, Roger $u Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
- 700 1_
- $a Olko, Pawel $u Institute of Nuclear Physics, Polish Academy of Sciences, (IFJ PAN), Krakow, Poland
- 773 0_
- $w MED00182989 $t Frontiers in oncology $x 2234-943X $g Roč. 12, č. - (2022), s. 903537
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36158693 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20221010 $b ABA008
- 991 __
- $a 20221031095247 $b ABA008
- 999 __
- $a ind $b bmc $g 1853822 $s 1174632
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 12 $c - $d 903537 $e 20220908 $i 2234-943X $m Frontiers in oncology $n Front Oncol $x MED00182989
- LZP __
- $a Pubmed-20221010