Influence of Cultivation Conditions on the Sioxanthin Content and Antioxidative Protection Effect of a Crude Extract from the Vegetative Mycelium of Salinispora tropica
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1918
Ministerstvo Zemědělství
PubMed
34564171
PubMed Central
PMC8469146
DOI
10.3390/md19090509
PII: md19090509
Knihovny.cz E-zdroje
- Klíčová slova
- Salinispora tropica, antioxidant activity, sioxanthin, total cellular carotenoids,
- MeSH
- antioxidancia chemie farmakologie MeSH
- bifenylové sloučeniny MeSH
- biomasa MeSH
- buněčné linie účinky léků MeSH
- karotenoidy metabolismus farmakologie MeSH
- komplexní směsi MeSH
- lidé MeSH
- Micromonosporaceae * MeSH
- mycelium MeSH
- oxidační stres účinky léků MeSH
- pikráty MeSH
- světlo MeSH
- teplota MeSH
- vodní organismy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- antioxidancia MeSH
- bifenylové sloučeniny MeSH
- karotenoidy MeSH
- komplexní směsi MeSH
- pikráty MeSH
- sioxanthin MeSH Prohlížeč
Due to their bioavailability, glycosylated carotenoids may have interesting biological effects. Sioxanthin, as a representative of this type of carotenoid, has been identified in marine actinomycetes of the genus Salinispora. This study evaluates, for the first time, the effect of cultivation temperature (T) and light intensity (LI) on the total cellular carotenoid content (TC), antioxidant activity (AA) and sioxanthin content (SX) of a crude extract (CE) from Salinispora tropica biomass in its vegetative state. Treatment-related differences in TC and SX values were statistically significantly and positively affected by T and LI, while AA was most significantly affected by T. In the S. tropica CE, TC correlated well (R2 = 0.823) with SX and somewhat less with AA (R2 = 0.777). A correlation between AA and SX was found to be less significant (R2 = 0.731). The most significant protective effect against oxidative stress was identified in the CE extracted from S. tropica biomass grown at the highest T and LI (CE-C), as was demonstrated using LNCaP and KYSE-30 human cell lines. The CE showed no cytotoxicity against LNCaP and KYSE-30 cell lines.
Zobrazit více v PubMed
Squillaci G., Parrella R., Carbone V., Minasi P., La Cara F., Morana A. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: Identification and antioxidant activity. Extremophiles. 2017;21:933–945. doi: 10.1007/s00792-017-0954-y. PubMed DOI
Albrecht M., Takaichi S., Steiger S., Wang Z., Sandmann G. Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli. Nat. Biotechnol. 2000;18:843–846. doi: 10.1038/78443. PubMed DOI
Furubayashi M., Umeno D. Directed evolution of carotenoid synthases for the production of unnatural carotenoids. Methods Mol. Biol. 2012;892:245–253. PubMed
Genç Y., Bardakci H., Yücel Ç., Karatoprak G.S., Akkol E.K., Barak T.H., Sobarzo-Sánchez E. Oxidative stress and marine carotenoids: Application by using nanoformulations. Mar. Drugs. 2020;18:423. doi: 10.3390/md18080423. PubMed DOI PMC
Maldonado L.A., Fenical W., Jensen P.R., Kauffman C.A., Mincer T.J., Ward A.C., Bull A.T., Goodfellow M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2005;55:1759–1766. doi: 10.1099/ijs.0.63625-0. PubMed DOI
Richter T.K.S., Hughes C.C., Moore B.S. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ. Microbiol. 2015;17:2158–2171. doi: 10.1111/1462-2920.12669. PubMed DOI PMC
Kim H., Kim S., Kim M., Lee C., Yang I., Nam S.J. Bioactive natural products from the genus Salinospora: A review. Arch. Pharm. Res. 2020;43:1230–1258. doi: 10.1007/s12272-020-01288-1. PubMed DOI
Jensen P.R., Moore B.S., Fenical W. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat. Prod. Rep. 2015;32:738–751. doi: 10.1039/C4NP00167B. PubMed DOI PMC
Eun J.B., Maruf A., Das P.R., Nam S.H. A review of encapsulation of carotenoids using spray drying and freeze drying. Crit. Rev. Food. Sci. Nutr. 2020;60:3547–3572. doi: 10.1080/10408398.2019.1698511. PubMed DOI
Jezkova Z., Binda E., Potocar T., Marinelli F., Halecky M., Branyik T. Laboratory scale cultivation of Salinispora tropica in shake flasks and mechanically stirred bioreactors. Biotechnol. Lett. 2021;43:1715–1722. doi: 10.1007/s10529-021-03121-1. PubMed DOI
Contador C.A., Rodríguez V., Andrews B.A., Asenjo J.A. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Leeuwenhoek. 2015;108:1075–1090. doi: 10.1007/s10482-015-0561-9. PubMed DOI
Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 2004;63:351–361. doi: 10.1007/s00253-003-1441-1. PubMed DOI
Steinbrenner J., Linden H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant. Physiol. 2001;125:810–817. doi: 10.1104/pp.125.2.810. PubMed DOI PMC
Sowmya R., Sachindra N.M. Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. Biocatal. Agric. Biotechnol. 2015;4:559–567. doi: 10.1016/j.bcab.2015.08.018. DOI
Prudhomme J., McDaniel E., Ponts N., Bertani S., Fenical W., Jensen P., Roch K.L. Marine actinomycetes: A new source of compounds against the human malaria parasite. PLoS ONE. 2008;3:e2335. doi: 10.1371/journal.pone.0002335. PubMed DOI PMC
Subramani R., Aalbersberg W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol. Res. 2012;167:571–580. doi: 10.1016/j.micres.2012.06.005. PubMed DOI
Niewerth D., Jansen G., Riethoff L.F.V., van Meerloo J., Kale A.J., Moore B.S., Assaraf Y.G., Anderl J.L., Zweegman S., Kaspers G.J.L., et al. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib) Mol. Pharmacol. 2014;86:12–19. doi: 10.1124/mol.114.092114. PubMed DOI PMC
Saini R.K., Nile S.H., Park S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015;76:735–750. doi: 10.1016/j.foodres.2015.07.047. PubMed DOI
Kim S.H., Lee J.M., Kim S.C., Park C.B., Lee P.C. Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochem. Cell Biol. 2014;92:105–111. doi: 10.1139/bcb-2013-0091. PubMed DOI
Mohamed H.E., van de Meene A.M.L., Roberson R.W., Vermaas W.F.J. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2005;187:6883–6892. doi: 10.1128/JB.187.20.6883-6892.2005. PubMed DOI PMC
Novakova M., Fabryova T., Vokurkova D., Doleckova I., Kopecka J., Hrouzek P., Tumova L., Cheel J. Separation of the glycosylated carotenoid myxoxanthophyll from Synechocystis salina by HPCCC and evaluation of its antioxidant, tyrosinase inhibitory and immune-stimulating properties. Separations. 2020;7:73. doi: 10.3390/separations7040073. DOI
Takano H., Obitsu S., Beppu T., Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): Identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 2005;187:1825–1832. doi: 10.1128/JB.187.5.1825-1832.2005. PubMed DOI PMC
Papp T., Csernetics A., Nagy G., Bencsik O., Iturriaga E.A., Eslava A.P., Vagvolgyj C. Canthaxanthin production with modified Mucor circinelloides strains. Appl. Microbiol. Biotechnol. 2013;97:4937–4950. doi: 10.1007/s00253-012-4610-2. PubMed DOI
Del Campo J.A., Moreno J., Rodriguez H., Vargas M.A., Rivas J., Guerrero M.G. Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta) J. Biotechnol. 2000;76:51–59. doi: 10.1016/S0168-1656(99)00178-9. PubMed DOI
Hozzein W.N., Al-Khalaf A.A., Mohany M., Al-Rejaie S.S., Ali D.M.I., Amin A.A. The potential protective effect of two actinomycete extracts against carbon tetrachloride-induced hepatotoxicity in rats. Environ. Sci. Pollut. Res. 2019;26:3834–3847. doi: 10.1007/s11356-018-3904-z. PubMed DOI
Passari A.K., Leo V.V., Singh G., Samanta L., Ram H., Siddaiah C.N., Hashem A., Al-Arjani A.F., Alqarawi A.A., Abd_Allah E.F., et al. In vivo studies of inoculated plants and in vitro studies utilizing methanolic extracts of endophytic Streptomyces sp. strain DBT34 obtained from Mirabilis jalapa L. exhibit ROS-scavenging and other bioactive properties. Int. J. Mol. Sci. 2021;21:7364. doi: 10.3390/ijms21197364. PubMed DOI PMC
Skibsted L.H. Carotenoids in antioxidant networks. colorants or radical scavengers. J. Agric. Food. Chem. 2012;60:2409–2417. doi: 10.1021/jf2051416. PubMed DOI
Rani A., Saini K.C., Bast F., Mehariya S., Bhatia S.K., Lavecchia R., Zuorro A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules. 2021;26:1142. doi: 10.3390/molecules26041142. PubMed DOI PMC
Thaipong K., Boonprakob U., Crosby K., Zevallos L.C., Byrne D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI