Laboratory scale cultivation of Salinispora tropica in shake flasks and mechanically stirred bioreactors
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1918
Ministry of Agriculture of the Czech Republic
PubMed
34003399
DOI
10.1007/s10529-021-03121-1
PII: 10.1007/s10529-021-03121-1
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass growth kinetics, Flask and bioreactor cultivation, Nitrogen sources, Salinispora tropica,
- MeSH
- biomasa MeSH
- bioreaktory mikrobiologie MeSH
- dusík metabolismus MeSH
- glukosa metabolismus MeSH
- kultivační média chemie MeSH
- kyslík metabolismus MeSH
- mechanické jevy MeSH
- Micromonosporaceae růst a vývoj MeSH
- salinita MeSH
- techniky vsádkové kultivace metody MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- glukosa MeSH
- kultivační média MeSH
- kyslík MeSH
OBJECTIVE: Marine actinomycetes from the genus Salinispora have an unexploited biotechnological potential. To accurately estimate their application potential however, data on their cultivation, including biomass growth kinetics, are needed but only incomplete information is currently available. RESULTS: This work provides some insight into the effect of temperature, salinity, nitrogen source, glucose concentration and oxygen supply on growth rate, biomass productivity and yield of Salinispora tropica CBN-440T. The experiments were carried out in unbaffled shake flasks and agitated laboratory-scale bioreactors. The results show that the optimum growth temperature lies within the range 28-30 °C, salinity is close to sea water and the initial glucose concentration is around 10 g/L. Among tested nitrogen sources, yeast extract and soy peptone proved to be the most suitable. The change from unbaffled to baffled flasks increased the volumetric oxygen transfer coefficient (kLa) as did the use of agitated bioreactors. The highest specific growth rate (0.0986 h-1) and biomass productivity (1.11 g/L/day) were obtained at kLa = 28.3 h-1. A further increase in kLa was achieved by increasing stirrer speed, but this led to a deterioration in kinetic parameters. CONCLUSIONS: Improvement of S. tropica biomass growth kinetics of was achieved mainly by identifying the most suitable nitrogen sources and optimizing kLa in baffled flasks and agitated bioreactors.
Zobrazit více v PubMed
Amanullah A, Justen P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5:109–114 DOI
Andryukov BG, Mikhaylov VV, Besednova NN, Zaporozhets TS, Bynina MP, Matosova EV (2018) The bacteriocinogenic potential of marine microorganisms. Russ J Mar Biol 44:433–441 DOI
Contador CA, Rodriguez V, Andrews BA, Asenjo JA (2015) Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Van Leeuwenhoek 108:1075–1090 DOI
Heenan NC, Adams CM, Hosken WR, Fleet HG (2002) Growth medium for culturing probiotic bacteria for applications in vegetarian food products. LWT Food Sci Technol 35:171–176 DOI
Jensen RP, Dwight R, Fenical W (1991) Distribution of Actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108 DOI
Jensen RP, Moore SB, Ferical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738–751 DOI
Large KP, Ison AP, Williams DJ (1998) The effect of agitation rate on lipid utilisation and clavulanic acid production in Streptomyces clavuligerus. J Biotechnol 63:111–119 DOI
Maldonado AL, Fenical W, Jensen RP, Kauffman AC, Mincer JT, Ward CA, Bull TA, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766 DOI
Manam RR, Macherla RV, Tsueng G, Dring WX, Weiss J, Neuteboom CTS, Lam SK, Poots CB (2009) Antiprotealide is a natural product. J Nat Prod 72:295–297 DOI
Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011 DOI
Niewerth D, Jansen G, Riethoff VFL, Meerloo J, Kale JA, Moore SB, Assaraf GY, Anderl LJ, Zweegman S, Kaspers LJG, Cloos J (2014) Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor Salinosporamide A (Marizomib). Mol Pharmacol 86:12–19 DOI
Nouioui I, Carro L, García-López M, Meier-Kolthoff PJ, Woyke T, Kyrpides CN, Pukall R, Klenk PH, Goodfellow M, Göker M (2018) Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol 9:1–119 DOI
Olmos E, Mehmood N, Husein LH, Goergen JL, Fick M, Delaunay S (2013) Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess Biosyst Eng 36:259–272 DOI
Potts CB, Lam SK (2010) Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide A (Marizomib) and other salinosporamides. Mar Drugs 8:835–880 DOI
Richter TKS (2014) Discovery, biosynthesis and evolutionary history of sioxanthin, a novel glycosylated carotenoid from marine bacteria Salinispora. UC San Diego. https://escholarship.org/uc/item/7mn416k3 . Accessed 27 Oct 2020
Richter SKT, Hughes CC, Moor SB (2015) Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ Microbiol 17:2158–2171 DOI
Roubos JA, Krabben P, Luiten RGM, Verbruggen HB, Heijnen JJ (2001) A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol Prog 17:336–347 DOI
Stiborova H, Branska B, Vesela T, Lovecka P, Stranska M, Hajslova J, Jiru M, Patakova P, Demnerova K (2016) Transformation of raw feather waste into digestible peptides and amino acids. J Chem Technol Biotechnol 91:1629–1637 DOI
Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580 DOI
Tribe LA, Briens CL, Margaritis A (1995) Determination of the volumetric mass transfer coefficient (k DOI
Tsueng G, Lam KS (2008a) A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184. Appl Microbiol Biotechnol 78:821–826 DOI
Tsueng G, Lam KS (2008b) Growth of Salinispora tropica strains CNB440, CNB476, and NPS21184 in nonsaline, low-sodium media. Appl Microbiol Biotechnol 80:873–880 DOI
Tsueng G, Lam KS (2010) A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora. Appl Microbiol Biotechnol 86:1525–1534 DOI
Tsueng G, Teisan S, Lam KS (2008) Defined salt formulations for the growth of Salinispora tropica strain NPS21184 and the production of salinosporamide A (NPI-0052) and related analogs. Appl Microbiol Biotechnol 78:827–832 DOI
Zangh JJ, Moore BS, Tang X (2018) Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters. Appl Microbiol Biotechnol 102:8437–8446 DOI