Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
The present study has undertaken the isolation of marine yeasts from mangrove sediment samples and their ability to produce alkaline protease enzymes. A total of 14 yeast isolates were recovered on yeast-malt agar (YMA) and yeast extract peptone dextrose (YEPD) agar medium. After screening for proteolytic activity on skim milk agar, marine yeast isolate, AKB-1 exhibited a hydrolysis zone of 18 mm. Optimal conditions for the enzyme production from yeast isolate AKB-1 were at 30 °C, pH 8, fructose as carbon source, potassium nitrate as nitrogen source, and 25% saline concentration. Under the optimal conditions, the protease enzyme activity of the isolate AKB-1 was observed to be 978 IU/mL. The structural and functional analysis was carried out through FTIR and HPLC analysis for the extracted protease enzyme. Furthermore, the enzyme produced was partially purified by solvent extraction using ethyl acetate and ammonium sulfate precipitation (3.4-fold) followed by dialysis (56.8-fold). The molecular weight of the purified enzyme was observed to be around 60 kDa using SDS-PAGE. The extracted protein showed good antibacterial activity against six different clinical bacterial pathogens and the highest against Bacillus cereus (16 ± 0.5 mm). The extracted protease enzyme was revealed to remove blood stains from cloth within 20 min of application similar to the commercial detergent. The marine yeast isolate was further identified as Candida orthopsilosis AKB-1 (Accession number KY348766) through 18S rRNA sequencing, and a phylogenetic tree was generated.
- MeSH
- Anti-Bacterial Agents pharmacology metabolism chemistry isolation & purification MeSH
- Bacillus cereus drug effects MeSH
- Bacterial Proteins * chemistry pharmacology metabolism isolation & purification MeSH
- Candida * enzymology isolation & purification genetics classification MeSH
- Endopeptidases * chemistry metabolism isolation & purification pharmacology MeSH
- Phylogeny MeSH
- Geologic Sediments microbiology MeSH
- Hydrogen-Ion Concentration MeSH
- Culture Media chemistry MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Weight MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
Azo dyes are used as coloring agent in textile industries at larger scale. As a result, large quantity of dye-enriched waste water is generated which subsequently poses environmental problems. Biological tool involving bacteria having azoreductase enzyme has proved to be more effective and efficient in dye effluent treatment. Current work focuses on Staphylococcus caprae (S. caprae) for degradation and decolorization of Reactive Red-195 (RR-195) azo dye. For this purpose, factors such as pH, temperature, inoculums, carbon and nitrogen sources, and dye concentrations have been optimized for maximum decolorization and degradation. S. caprae (4 mg/mL) efficiently resulted into 90% decolorization of RR-195 dye under static condition at 100 μg/mL concentration, 30 °C and pH 7.0 at a 12-h contact period. FTIR analysis has revealed the formation of new functional groups in the treated dye such as O-H stretch at 3370 cm-1, C-H band stretching at 2928 cm-1, and new band at 1608 cm-1 which specify the degradation of aromatic ring, 1382 and 1118 cm-1 represents desulfonated peaks. Biodegraded metabolites of RR-195 dye such as phenol, 3, 5-di-tert-butylphenol, and phthalic acid have been identified respectively that find industrial applications. Phytotoxicity test has shown non-toxic effects of treated dye on germination of Vigna radiata and Triticum aestivum seeds. Further, antibiotic diffusion assay has confirmed the biosafety of S. caprae.
- MeSH
- Azo Compounds * metabolism toxicity MeSH
- Coloring Agents * metabolism MeSH
- Biodegradation, Environmental * MeSH
- Water Pollutants, Chemical metabolism MeSH
- Nitrogen metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Wastewater * microbiology chemistry MeSH
- Industrial Waste MeSH
- Staphylococcus capitis metabolism isolation & purification MeSH
- Staphylococcus metabolism MeSH
- Temperature MeSH
- Textiles MeSH
- Textile Industry MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
Východiska: Hledání účinných biomarkerů pro včasnou diagnostiku ovariálního karcinomu (ovarian cancer – OC) patří k naléhavým úkolům moderní onkogynekologie. Metabolické profilování pomocí ultra vysokoúčinné kapalinové chromatografie a hmotnostní spektrometrie (ultraigh performance liquid chromatography and mass spectrometry – UHPLC-MS) poskytuje informace o souhrnu všech nízkomolekulárních metabolitů vzorku biologických tekutin pacienta, které odrážejí procesy probíhající v těle. Cílem studie bylo prozkoumat metabolomický profil krevní plazmy a moči pacientek se serózním ovariálním adenokarcinomem pomocí UHPLC-MS. Materiál a metody: K provedení metabolomické analýzy bylo odebráno 60 vzorků krevní plazmy a 60 vzorků moči pacientek s diagnózou serózního karcinomu vaječníků a 20 vzorků zdravých dobrovolníků. Chromatografická separace byla provedena na chromatografu Vanquish Flex UHPLC System (Thermo Scientific, Německo). Analýza hmotnostní spektrometrií byla provedena na Orbitrap Exploris 480 (Thermo Scientific, Německo) vybaveném elektrosprejovým ionizačním zdrojem. Bioinformatická analýza byla provedena pomocí Compound Discoverer Software (Thermo Fisher Scientific, USA), statistická analýza dat byla provedena v programovacím jazyce Python pomocí knihovny SciPy. Výsledky: Pomocí UHPLC-MS bylo v krevní plazmě identifikováno 1 049 metabolitů různých tříd. U pacientek s OC mělo 8 metabolitů významně nižší koncentraci (p < 0,01) ve srovnání se zdravými dárci, zatímco u 19 látek byly zjištěny vyšší hladiny (p < 0,01). Během metabolomického profilování vzorků moči bylo identifikováno 417 metabolitů: 12 látek mělo významně nižší koncentraci ve srovnání se zjevně zdravými jedinci a u 14 látek byly hladiny vyšší (p < 0,01). U pacientek se serózním adenokarcinomem vaječníků byla zjištěna významná změna v metabolomu krevní plazmy a moči, vyjádřená abnormálními koncentracemi lipidů a jejich derivátů, mastných kyselin a jejich derivátů, acylkarnitinů, fosfolipidů, aminokyselin a jejich derivátů, derivátů dusíkatých bází a steroidů. Mezi nejslibnější markery tohoto onemocnění přitom patří kynurenin, kyselina myristová, lysofosfatidylcholin a L-oktanoylkarnitin. Závěr: Odhalené změny v metabolomu se mohou stát základem pro zlepšení přístupů k diagnostice serózního ovariálního adenokarcinomu.
Background: The search for effective biomarkers for ovarian cancer (OC) early diagnosis is an urgent task of modern oncogynecology. Metabolic profiling by ultra-high performance liquid chromatography and mass spectrometry (UHPLC-MS) provides information on the totality of all low molecular weight metabolites of patient’s biological fluids sample, reflecting the processes occurring in the body. The aim of the study was to research blood plasma and urine metabolomic profile of patients with serous ovarian adenocarcinoma by UHPLC-MS. Material and methods: To perform metabolomic analysis, 60 blood plasma samples and 60 urine samples of patients diagnosed with serous ovarian carcinoma and 20 samples of apparently healthy volunteers were taken. Chromatographic separation was performed on a Vanquish Flex UHPLC System chromatograph (Thermo Scientific, Germany). Mass spectrometric analysis was performed on an Orbitrap Exploris 480 (Thermo Scientific, Germany) equipped with an electrospray ionization source. Bioinformatic analysis was performed using Compound Discoverer Software (Thermo Fisher Scientific, USA), statistical data analysis was performed in the Python programming language using the SciPy library. Results: Using UHPLC-MS, 1,049 metabolites of various classes were identified in blood plasma. In patients with OC, 8 metabolites had a significantly lower concentration (P < 0.01) compared with conditionally healthy donors, while the content of 19 compounds, on the contrary, increased (P < 0.01). During the metabolomic profiling of urine samples, 417 metabolites were identified: 12 compounds had a significantly lower concentration compared to apparently healthy individuals, the content of 14 compounds increased (P < 0.01). In patients with ovary serous adenocarcinoma, a significant change in the metabolome of blood plasma and urine was found, expressed in abnormal concentrations of lipids and their derivatives, fatty acids and their derivatives, acylcarnitines, phospholipids, amino acids and their derivatives, derivatives of nitrogenous bases and steroids. At the same time, kynurenine, myristic acid, lysophosphatidylcholine and L-octanoylcarnitine are the most promising markers of this disease. Conclusion: The revealed changes in the metabolome can become the basis for improving approaches to the diagnosis of serous ovarian adenocarcinoma.
Persons living in industrial environments are exposed to levels of air pollution that can affect their health and fertility. The Czech capital city, Prague, and the Ostrava industrial agglomeration differ in their major sources of air pollution. In Prague, heavy traffic produces high levels of nitrogen oxides throughout the year. In the Ostrava region, an iron industry and local heating are sources of particulate matter (PM) and benzo[a]pyrene (B[a]P), especially in the winter. We evaluated the effects of air pollution on human sperm mitochondrial DNA (mtDNA). Using real-time PCR, we analysed sperm mtDNA copy number and deletion rate in Prague city policemen in two seasons (spring and autumn) and compared the results with those from Ostrava. In Prague, the sperm mtDNA deletion rate was significantly higher in autumn than in spring, which is the opposite of the results from Ostrava. The sperm mtDNA copy number did not show any seasonal differences in either of the cities; it was correlated negatively with sperm concentration, motility, and viability, and with sperm chromatin integrity (assessed with the Sperm Chromatin Structure Assay). The comparison between the two cities showed that the sperm mtDNA deletion rate in spring and the sperm mtDNA copy number in autumn were significantly lower in Prague vs. Ostrava. Our study supports the hypothesis that sperm mtDNA deletion rate is affected by the composition of air pollution. Sperm mtDNA abundance is closely associated with chromatin damage and standard semen characteristics.
- MeSH
- Adult MeSH
- Air Pollutants toxicity adverse effects MeSH
- Humans MeSH
- DNA, Mitochondrial * genetics MeSH
- Sperm Motility drug effects MeSH
- Particulate Matter toxicity adverse effects MeSH
- Police MeSH
- Seasons MeSH
- Spermatozoa * drug effects MeSH
- DNA Copy Number Variations * MeSH
- Air Pollution * adverse effects MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Geographicals
- Czech Republic MeSH
The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
- MeSH
- Alanine * metabolism MeSH
- Gluconeogenesis * MeSH
- Glucose metabolism MeSH
- Glutamine * metabolism MeSH
- Liver * metabolism MeSH
- Kidney * metabolism MeSH
- Humans MeSH
- Intestine, Small * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.
- MeSH
- Cellulase * MeSH
- Nitrogen MeSH
- Fungi MeSH
- Composting * MeSH
- Oxygenases * MeSH
- Publication type
- Journal Article MeSH
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
- MeSH
- Diazooxonorleucine * pharmacology therapeutic use MeSH
- Glutamine metabolism MeSH
- Humans MeSH
- Neoplasms * drug therapy metabolism MeSH
- Prodrugs * pharmacology therapeutic use MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Crocosphaera watsonii is a unicellular N2-fixing (diazotrophic) cyanobacterium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, it can be a source of bioavailable nitrogen (N) to the microbial community in N-limited environments, and this may fuel primary production in the regions where it occurs. Crocosphaera watsonii has been the subject of intense study, both in culture and in field populations. Here, we summarize the current understanding of the phylogenetic and physiological diversity of C. watsonii, its distribution, and its ecological niche. Analysis of the relationships among the individual Crocosphaera species and related free-living and symbiotic lineages of diazotrophs based on the nifH gene have shown that the C. watsonii group holds a basal position and that its sequence is more similar to Rippkaea and Zehria than to other Crocosphaera species. This finding warrants further scrutiny to determine if the placement is related to a horizontal gene transfer event. Here, the nifH UCYN-B gene copy number from a recent synthesis effort was used as a proxy for relative C. watsonii abundance to examine patterns of C. watsonii distribution as a function of environmental factors, like iron and phosphorus concentration, and complimented with a synthesis of C. watsonii physiology. Furthermore, we have summarized the current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, and quantitative modeling of physiology. Because N availability can limit primary production, C. watsonii is widely recognized for its importance to carbon and N cycling in ocean ecosystems, and we conclude this review by highlighting important topics for further research on this important species.
- MeSH
- Nitrogen Fixation * MeSH
- Phylogeny * MeSH
- Cyanobacteria * genetics metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH