Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane

J. Felix, L. Bumba, C. Liesche, A. Fraudeau, F. Rébeillé, JY. El Khoury, K. Huard, B. Gallet, C. Moriscot, JP. Kleman, Y. Duhoo, M. Jessop, E. Kandiah, F. Barras, J. Jouhet, I. Gutsche

. 2022 ; 13 (1) : 5502. [pub] 20220920

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024377

Grantová podpora
ALTF441-2017 European Molecular Biology Organization (EMBO)
RespViRALI EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
647784 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
ANR-10-INSB-05-01 Agence Nationale de la Recherche (French National Research Agency)
ANR-10-INBS-0005-02 French Infrastructure for Integrated Structural Biology (FRISBI)

Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024377
003      
CZ-PrNML
005      
20221031100236.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-022-32992-9 $2 doi
035    __
$a (PubMed)36127320
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Felix, Jan $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $u Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium $u Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium $1 https://orcid.org/http://orcid.org/0000000284369467
245    14
$a The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane / $c J. Felix, L. Bumba, C. Liesche, A. Fraudeau, F. Rébeillé, JY. El Khoury, K. Huard, B. Gallet, C. Moriscot, JP. Kleman, Y. Duhoo, M. Jessop, E. Kandiah, F. Barras, J. Jouhet, I. Gutsche
520    9_
$a Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.
650    _2
$a ATPázy spojené s různými buněčnými aktivitami $x metabolismus $7 D000074183
650    12
$a adenosintrifosfatasy $x metabolismus $7 D000251
650    12
$a aminoglykosidy $x farmakologie $7 D000617
650    _2
$a antibakteriální látky $x farmakologie $7 D000900
650    12
$a Escherichia coli $x účinky léků $x enzymologie $7 D004926
650    12
$a proteiny z Escherichia coli $x metabolismus $7 D029968
650    _2
$a fumaráty $7 D005650
650    _2
$a gentamiciny $7 D005839
650    _2
$a membránové lipidy $7 D008563
650    _2
$a kyslík $x metabolismus $7 D010100
650    _2
$a fosfolipidy $7 D010743
655    _2
$a časopisecké články $7 D016428
700    1_
$a Bumba, Ladislav $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $u Institute of Microbiology, The Academy of Sciences of the Czech Republic, Videnska, 1083, Prague, Czech Republic $1 https://orcid.org/http://orcid.org/0000000166595447
700    1_
$a Liesche, Clarissa $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Fraudeau, Angélique $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $u EMBL Grenoble, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Rébeillé, Fabrice $u Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France
700    1_
$a El Khoury, Jessica Y $u Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France $1 https://orcid.org/http://orcid.org/000000017781916X
700    1_
$a Huard, Karine $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Gallet, Benoit $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $1 https://orcid.org/http://orcid.org/0000000187587681
700    1_
$a Moriscot, Christine $u Univ Grenoble Alpes, CEA, CNRS, ISBG, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Kleman, Jean-Philippe $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $1 https://orcid.org/http://orcid.org/0000000156485295
700    1_
$a Duhoo, Yoan $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Jessop, Matthew $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $u Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK $1 https://orcid.org/http://orcid.org/0000000188804481
700    1_
$a Kandiah, Eaazhisai $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France $u European Synchrotron Radiation Facility, 71 Avenue des martyrs, Grenoble, France
700    1_
$a Barras, Frédéric $u Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France $1 https://orcid.org/http://orcid.org/0000000334582574
700    1_
$a Jouhet, Juliette $u Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France $1 https://orcid.org/http://orcid.org/0000000244022194
700    1_
$a Gutsche, Irina $u Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France. irina.gutsche@ibs.fr $1 https://orcid.org/http://orcid.org/0000000219083921
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 13, č. 1 (2022), s. 5502
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36127320 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100233 $b ABA008
999    __
$a ok $b bmc $g 1854221 $s 1175667
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 13 $c 1 $d 5502 $e 20220920 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
GRA    __
$a ALTF441-2017 $p European Molecular Biology Organization (EMBO)
GRA    __
$a RespViRALI $p EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
GRA    __
$a 647784 $p EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
GRA    __
$a ANR-10-INSB-05-01 $p Agence Nationale de la Recherche (French National Research Agency)
GRA    __
$a ANR-10-INBS-0005-02 $p French Infrastructure for Integrated Structural Biology (FRISBI)
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...