Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets

H. Che, T. Jatsenko, L. Lenaerts, L. Dehaspe, L. Vancoillie, N. Brison, I. Parijs, K. Van Den Bogaert, D. Fischerova, R. Heremans, C. Landolfo, AC. Testa, A. Vanderstichele, L. Liekens, V. Pomella, A. Wozniak, C. Dooms, E. Wauters, S. Hatse, K....

. 2022 ; 68 (9) : 1164-1176. [pub] 20220901

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024531
E-zdroje Online Plný text

NLK ProQuest Central od 2002-12-01 do 2022-04-30
Open Access Digital Library od 1955-02-01
Medline Complete (EBSCOhost) od 2010-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 2002-12-01 do 2022-04-30
Health & Medicine (ProQuest) od 2002-12-01 do 2022-04-30
Public Health Database (ProQuest) od 2002-12-01 do 2022-04-30

BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.

Centre for Human Genetics University Hospitals Leuven Leuven Belgium

Department of Chronic Diseases and Metabolism Laboratory of Respiratory Diseases and Thoracic Surgery KU Leuven Leuven Belgium

Department of Development and Regeneration Woman and Child KU Leuven Leuven Belgium

Department of General Medical Oncology Leuven Cancer Institute University Hospitals Leuven Leuven Belgium

Department of Gynecology and Obstetrics University Hospitals Leuven Leuven Belgium

Department of Hematology University Hospitals Leuven Leuven Belgium

Department of Human Genetics Laboratory for Cytogenetics and Genome Research KU Leuven Leuven Belgium

Department of Human Genetics Laboratory of Genetics of Malignant Diseases KU Leuven Leuven Belgium

Department of Human Genetics Laboratory of Translational Genetics VIB KU Leuven Leuven Belgium

Department of Obstetrics and Gynaecology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Oncology Laboratory of Experimental Oncology KU Leuven Leuven Belgium

Department of Oncology Laboratory of Gynecological Oncology KU Leuven Leuven Belgium

Department of Oncology Laboratory of Tumor Immunology and Immunotherapy Leuven Cancer Institute KU Leuven Leuven Belgium

Department of Oncology Molecular Digestive Oncology KU Leuven Leuven Belgium

Department of Pneumology University Hospitals Leuven Leuven Belgium

Department of Surgery Center for Gynecological Oncology Amsterdam Academic Medical Centre Amsterdam University of Amsterdam and the Netherlands Cancer Institute Antoni van Leeuwenhoek Hospital Amsterdam the Netherlands

Department of Woman and Child Health Fondazione Policlinico Universitario A Gemelli IRCCS Università Cattolica del Sacro Cuore Roma Rome Italy

Multidisciplinary Breast Centre Leuven Cancer Institute University Hospitals Leuven Leuven Belgium

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024531
003      
CZ-PrNML
005      
20221031100109.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/clinchem/hvac095 $2 doi
035    __
$a (PubMed)35769009
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Che, Huiwen $u Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium $1 https://orcid.org/000000023651069X
245    10
$a Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets / $c H. Che, T. Jatsenko, L. Lenaerts, L. Dehaspe, L. Vancoillie, N. Brison, I. Parijs, K. Van Den Bogaert, D. Fischerova, R. Heremans, C. Landolfo, AC. Testa, A. Vanderstichele, L. Liekens, V. Pomella, A. Wozniak, C. Dooms, E. Wauters, S. Hatse, K. Punie, P. Neven, H. Wildiers, S. Tejpar, D. Lambrechts, A. Coosemans, D. Timmerman, P. Vandenberghe, F. Amant, JR. Vermeesch
520    9_
$a BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.
650    _2
$a nádorové biomarkery $x genetika $7 D014408
650    12
$a volné cirkulující nukleové kyseliny $7 D000073888
650    _2
$a lidé $7 D006801
650    12
$a nádory $x diagnóza $x genetika $7 D009369
650    _2
$a sekvenování celého genomu $7 D000073336
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jatsenko, Tatjana $u Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
700    1_
$a Lenaerts, Liesbeth $u Department of Oncology, Laboratory of Gynecological Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Dehaspe, Luc $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Vancoillie, Leen $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Brison, Nathalie $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Parijs, Ilse $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Van Den Bogaert, Kris $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Fischerova, Daniela $u Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Heremans, Ruben $u Department of Development and Regeneration, Woman and Child, KU Leuven, Leuven, Belgium $1 https://orcid.org/0000000349458867
700    1_
$a Landolfo, Chiara $u Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Testa, Antonia Carla $u Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore Roma, Rome, Italy
700    1_
$a Vanderstichele, Adriaan $u Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Liekens, Lore $u Department of Oncology, Molecular Digestive Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Pomella, Valentina $u Department of Oncology, Molecular Digestive Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Wozniak, Agnieszka $u Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium $1 https://orcid.org/000000019726144X
700    1_
$a Dooms, Christophe $u Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium $u Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Wauters, Els $u Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium $u Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Hatse, Sigrid $u Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium $u Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Punie, Kevin $u Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium $u Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium $1 https://orcid.org/0000000211627963
700    1_
$a Neven, Patrick $u Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium $u Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
700    1_
$a Wildiers, Hans $u Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium $u Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium $1 https://orcid.org/0000000189907837
700    1_
$a Tejpar, Sabine $u Department of Oncology, Molecular Digestive Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Lambrechts, Diether $u Department of Human Genetics, Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
700    1_
$a Coosemans, An $u Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium $1 https://orcid.org/0000000273214339
700    1_
$a Timmerman, Dirk $u Department of Development and Regeneration, Woman and Child, KU Leuven, Leuven, Belgium $u Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium $1 https://orcid.org/0000000237076645
700    1_
$a Vandenberghe, Peter $u Department of Human Genetics, Laboratory of Genetics of Malignant Diseases, KU Leuven, Leuven, Belgium $u Department of Hematology, University Hospitals Leuven, Leuven, Belgium $1 https://orcid.org/0000000347191935
700    1_
$a Amant, Frédéric $u Department of Oncology, Laboratory of Gynecological Oncology, KU Leuven, Leuven, Belgium $u Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium $u Department of Surgery, Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam-University of Amsterdam and the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands $1 https://orcid.org/0000000160552569
700    1_
$a Vermeesch, Joris Robert $u Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium $u Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium $1 https://orcid.org/0000000230711191
773    0_
$w MED00001129 $t Clinical chemistry $x 1530-8561 $g Roč. 68, č. 9 (2022), s. 1164-1176
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35769009 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100107 $b ABA008
999    __
$a ok $b bmc $g 1854318 $s 1175821
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 68 $c 9 $d 1164-1176 $e 20220901 $i 1530-8561 $m Clinical chemistry $n Clin Chem $x MED00001129
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...