-
Je něco špatně v tomto záznamu ?
Natural language signatures of psilocybin microdosing
C. Sanz, F. Cavanna, S. Muller, L. de la Fuente, F. Zamberlan, M. Palmucci, L. Janeckova, M. Kuchar, F. Carrillo, AM. García, C. Pallavicini, E. Tagliazucchi
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
PICT-2019-02294
Fondo para la Investigación Científica y Tecnológica
NU21-04-00307
Ministerstvo Vnitra České Republiky
20-25349S
Grantová Agentura České Republiky
1210176
Fondo Nacional de Desarrollo Científico y Tecnológico
UK-22-865742
Alzheimer's Association - United States
NLK
ProQuest Central
od 1997-09-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 1996-10-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-09-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-09-01 do Před 1 rokem
Psychology Database (ProQuest)
od 1997-09-01 do Před 1 rokem
- MeSH
- dospělí MeSH
- duševní poruchy * MeSH
- dvojitá slepá metoda MeSH
- halucinogeny * farmakologie MeSH
- jazyk (prostředek komunikace) MeSH
- kreativita MeSH
- lidé MeSH
- psilocybin farmakologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
RATIONALE: Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. OBJECTIVES: Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. METHODS: Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 ± 3.53 years; 23 males: 30.87 ± 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. RESULTS: Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC [Formula: see text] 0.8). CONCLUSIONS: These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.
Applied Artificial Intelligence Lab CABA Buenos Aires Argentina
Cognitive Neuroscience Center Universidad de San Andrés Buenos Aires Argentina
Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
Global Brain Health Institute Dublin Ireland
Global Brain Health Institute University of California San Francisco San Francisco CA USA
Latin American Brain Health Institute Universidad Adolfo Ibañez Santiago Chile
National Scientific and Technical Research Council Buenos Aires Argentina
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024675
- 003
- CZ-PrNML
- 005
- 20221031100351.0
- 007
- ta
- 008
- 221017s2022 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00213-022-06170-0 $2 doi
- 035 __
- $a (PubMed)35676541
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Sanz, Camila $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina. camilasanz@gmail.com
- 245 10
- $a Natural language signatures of psilocybin microdosing / $c C. Sanz, F. Cavanna, S. Muller, L. de la Fuente, F. Zamberlan, M. Palmucci, L. Janeckova, M. Kuchar, F. Carrillo, AM. García, C. Pallavicini, E. Tagliazucchi
- 520 9_
- $a RATIONALE: Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. OBJECTIVES: Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. METHODS: Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 ± 3.53 years; 23 males: 30.87 ± 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. RESULTS: Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC [Formula: see text] 0.8). CONCLUSIONS: These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a kreativita $7 D003405
- 650 _2
- $a dvojitá slepá metoda $7 D004311
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a halucinogeny $x farmakologie $7 D006213
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a jazyk (prostředek komunikace) $7 D007802
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a duševní poruchy $7 D001523
- 650 _2
- $a psilocybin $x farmakologie $7 D011562
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Cavanna, Federico $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina $u Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Montañeses 2325, C1428 CABA, Buenos Aires, Argentina
- 700 1_
- $a Muller, Stephanie $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
- 700 1_
- $a de la Fuente, Laura $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina $u Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina
- 700 1_
- $a Zamberlan, Federico $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina $u Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands
- 700 1_
- $a Palmucci, Matías $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
- 700 1_
- $a Janeckova, Lucie $u Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
- 700 1_
- $a Kuchar, Martin $u Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic $u Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
- 700 1_
- $a Carrillo, Facundo $u Applied Artificial Intelligence Lab (ICC-CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
- 700 1_
- $a García, Adolfo M $u Cognitive Neuroscience Center (1644), Universidad de San Andrés, Buenos Aires, Argentina $u National Scientific and Technical Research Council (1425), Buenos Aires, Argentina $u Global Brain Health Institute (94143), University of California-San Francisco, San Francisco, CA, USA $u Global Brain Health Institute (94143), Trinity College Dublin (D02), Dublin, Ireland $u Departamento de Lingüística Y Literatura, Facultad de Humanidades (9160000), Universidad de Santiago de Chile, Santiago, Chile
- 700 1_
- $a Pallavicini, Carla $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina $u Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Montañeses 2325, C1428 CABA, Buenos Aires, Argentina
- 700 1_
- $a Tagliazucchi, Enzo $u Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina. tagliazucchi.enzo@googlemail.com $u Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile. tagliazucchi.enzo@googlemail.com $1 https://orcid.org/http://orcid.org/0000000304219993
- 773 0_
- $w MED00003990 $t Psychopharmacologia $x 1432-2072 $g Roč. 239, č. 9 (2022), s. 2841-2852
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35676541 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031100348 $b ABA008
- 999 __
- $a ok $b bmc $g 1854421 $s 1175965
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 239 $c 9 $d 2841-2852 $e 20220609 $i 1432-2072 $m Psychopharmacology $n Psychopharmacology $x MED00003990
- GRA __
- $a PICT-2019-02294 $p Fondo para la Investigación Científica y Tecnológica
- GRA __
- $a NU21-04-00307 $p Ministerstvo Vnitra České Republiky
- GRA __
- $a 20-25349S $p Grantová Agentura České Republiky
- GRA __
- $a 1210176 $p Fondo Nacional de Desarrollo Científico y Tecnológico
- GRA __
- $a UK-22-865742 $p Alzheimer's Association $2 United States
- LZP __
- $a Pubmed-20221017