-
Je něco špatně v tomto záznamu ?
Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots
CM. Oral, M. Ussia, M. Pumera
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
K-21-7049
CEITEC
CZ.02.2.69/0.0/0.0/19_073/0016948
Quality Internal Grants
Vysoké Učení Technické v Brně
PubMed
36026536
DOI
10.1002/smll.202202600
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky MeSH
- chemické látky znečišťující vodu * MeSH
- lakasa metabolismus MeSH
- lidé MeSH
- oxid zinečnatý * MeSH
- oxytetracyklin * MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Antibiotics are antimicrobial substances that can be used for preventive and therapeutic purposes in humans and animals. Their overdose usage has led to uncontrolled release to the environment, contributing significantly to the development of antimicrobial resistance phenomena. Here, enzyme-immobilized self-propelled zinc oxide (ZnO) microrobots are proposed to effectively target and degrade the released antibiotics in water bodies. Specifically, the morphology of the microrobots is tailored via the incorporation of Au during the synthetic process to lead the light-controlled motion into having on/off switching abilities. The microrobots are further modified with laccase enzyme by physical adsorption, and the immobilization process is confirmed by enzymatic activity measurements. Oxytetracycline (OTC) is used as a model of veterinary antibiotics to investigate the enzyme-immobilized microrobots for their removal capacities. The results demonstrate that the presence of laccase on the microrobot surfaces can enhance the removal of antibiotics via oxidation. This concept for immobilizing enzymes on self-propelled light-driven microrobots leads to the effective removal of the released antibiotics from water bodies with an environmentally friendly strategy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024681
- 003
- CZ-PrNML
- 005
- 20221031100332.0
- 007
- ta
- 008
- 221017s2022 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/smll.202202600 $2 doi
- 035 __
- $a (PubMed)36026536
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Oral, Cagatay M $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/https://orcid.org/0000000152202104
- 245 10
- $a Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots / $c CM. Oral, M. Ussia, M. Pumera
- 520 9_
- $a Antibiotics are antimicrobial substances that can be used for preventive and therapeutic purposes in humans and animals. Their overdose usage has led to uncontrolled release to the environment, contributing significantly to the development of antimicrobial resistance phenomena. Here, enzyme-immobilized self-propelled zinc oxide (ZnO) microrobots are proposed to effectively target and degrade the released antibiotics in water bodies. Specifically, the morphology of the microrobots is tailored via the incorporation of Au during the synthetic process to lead the light-controlled motion into having on/off switching abilities. The microrobots are further modified with laccase enzyme by physical adsorption, and the immobilization process is confirmed by enzymatic activity measurements. Oxytetracycline (OTC) is used as a model of veterinary antibiotics to investigate the enzyme-immobilized microrobots for their removal capacities. The results demonstrate that the presence of laccase on the microrobot surfaces can enhance the removal of antibiotics via oxidation. This concept for immobilizing enzymes on self-propelled light-driven microrobots leads to the effective removal of the released antibiotics from water bodies with an environmentally friendly strategy.
- 650 _2
- $a antibakteriální látky $7 D000900
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lakasa $x metabolismus $7 D042845
- 650 12
- $a oxytetracyklin $7 D010118
- 650 _2
- $a voda $7 D014867
- 650 12
- $a chemické látky znečišťující vodu $7 D014874
- 650 12
- $a oxid zinečnatý $7 D015034
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Ussia, Martina $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $1 https://orcid.org/https://orcid.org/0000000232486725
- 700 1_
- $a Pumera, Martin $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $u Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic $u Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan $1 https://orcid.org/https://orcid.org/0000000158462951
- 773 0_
- $w MED00008487 $t Small $x 1613-6829 $g Roč. 18, č. 39 (2022), s. e2202600
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36026536 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031100330 $b ABA008
- 999 __
- $a ok $b bmc $g 1854425 $s 1175971
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 18 $c 39 $d e2202600 $e 20220826 $i 1613-6829 $m Small $n Small $x MED00008487
- GRA __
- $a K-21-7049 $p CEITEC
- GRA __
- $a CZ.02.2.69/0.0/0.0/19_073/0016948 $p Quality Internal Grants
- GRA __
- $p Vysoké Učení Technické v Brně
- LZP __
- $a Pubmed-20221017