Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability

JM. Merchut-Maya, J. Bartek, J. Bartkova, P. Galanos, MR. Pantalone, M. Lee, HL. Cui, PJ. Shilling, CB. Brøchner, H. Broholm, A. Maya-Mendoza, C. Söderberg-Naucler, J. Bartek

. 2022 ; 29 (8) : 1639-1653. [pub] 20220222

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024979
E-zdroje Online Plný text

NLK Free Medical Journals od 2011
PubMed Central od 2011 do Před 1 rokem
Europe PubMed Central od 2011 do Před 1 rokem
ProQuest Central od 2000-01-01 do Před 1 rokem
Open Access Digital Library od 1997-01-01
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem

Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024979
003      
CZ-PrNML
005      
20250506100923.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41418-022-00953-w $2 doi
035    __
$a (PubMed)35194187
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Merchut-Maya, Joanna Maria $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark $u DNA Replication and Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark
245    10
$a Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability / $c JM. Merchut-Maya, J. Bartek, J. Bartkova, P. Galanos, MR. Pantalone, M. Lee, HL. Cui, PJ. Shilling, CB. Brøchner, H. Broholm, A. Maya-Mendoza, C. Söderberg-Naucler, J. Bartek
520    9_
$a Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
650    _2
$a karcinogeneze $x genetika $7 D063646
650    12
$a Cytomegalovirus $x genetika $x metabolismus $7 D003587
650    12
$a poškození DNA $7 D004249
650    _2
$a nestabilita genomu $7 D042822
650    _2
$a lidé $7 D006801
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a replikace viru $7 D014779
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bártek, Jiří, $d 1953- $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark $u Department of Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden $u Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden $u Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark $7 xx0046271
700    1_
$a Bartkova, Jirina $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark $u Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
700    1_
$a Galanos, Panagiotis $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark $1 https://orcid.org/0000000314034685
700    1_
$a Pantalone, Mattia Russel $u Department of Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden $u Department of Neurology, Karolinska University Hospital, Stockholm, Sweden $1 https://orcid.org/0000000227064683
700    1_
$a Lee, MyungHee $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark $u DNA Replication and Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark
700    1_
$a Cui, Huanhuan L $u Department of Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden
700    1_
$a Shilling, Patrick J $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
700    1_
$a Brøchner, Christian Beltoft $u Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
700    1_
$a Broholm, Helle $u Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
700    1_
$a Maya-Mendoza, Apolinar $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark. apomm@cancer.dk $u DNA Replication and Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark. apomm@cancer.dk $1 https://orcid.org/0000000174529896
700    1_
$a Söderberg-Naucler, Cecilia $u Department of Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden. cecilia.naucler@ki.se $u Department of Neurology, Karolinska University Hospital, Stockholm, Sweden. cecilia.naucler@ki.se $u MediCity Research Laboratory, University of Turku, Turku, Finland. cecilia.naucler@ki.se $u Institute of Biomedicine, University of Turku, Turku, Finland. cecilia.naucler@ki.se $1 https://orcid.org/0000000189553610
700    1_
$a Bartek, Jiri $u Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark. jb@cancer.dk $u Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden. jb@cancer.dk $u Genome Integrity Laboratory, Institute of Molecular Genetics, Prague, Czech Republic. jb@cancer.dk $1 https://orcid.org/0000000320137525
773    0_
$w MED00005364 $t Cell death and differentiation $x 1476-5403 $g Roč. 29, č. 8 (2022), s. 1639-1653
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35194187 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20250506100922 $b ABA008
999    __
$a ok $b bmc $g 1854598 $s 1176269
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 29 $c 8 $d 1639-1653 $e 20220222 $i 1476-5403 $m Cell death and differentiation $n Cell Death Differ $x MED00005364
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...