• Je něco špatně v tomto záznamu ?

Chest area segmentation in 3D images of sleeping patients

Y. Goldstein, M. Schätz, M. Avigal

. 2022 ; 60 (8) : 2159-2172. [pub] 20220530

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22025080
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

Although the field of sleep study has greatly developed over recent years, the most common and efficient way to detect sleep issues remains a sleep examination performed in a sleep laboratory. This examination measures several vital signals by polysomnograph during a full night's sleep using multiple sensors connected to the patient's body. Nevertheless, despite being the gold standard, the sensors and the unfamiliar environment's connection inevitably impact the quality of the patient's sleep and the examination itself. Therefore, with the novel development of accurate and affordable 3D sensing devices, new approaches for non-contact sleep study have emerged. These methods utilize different techniques to extract the same breathing parameters but with contactless methods. However, to enable reliable remote extraction, these methods require accurate identification of the basic region of interest (ROI), i.e., the patient's chest area. The lack of automated ROI segmenting of 3D time series is currently holding back the development process. We propose an automatic chest area segmentation algorithm that given a time series of 3D frames containing a sleeping patient as input outputs a segmentation image with the pixels that correspond to the chest area. Beyond significantly speeding up the development process of the non-contact methods, accurate automatic segmentation can enable a more precise feature extraction. In addition, further tests of the algorithm on existing data demonstrate its ability to improve the sensitivity of a prior solution that uses manual ROI selection. The approach is on average 46.9% more sensitive with a maximal improvement of 220% when compared to manual ROI. All mentioned can pave the way for placing non-contact algorithms as leading candidates to replace existing traditional methods used today.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22025080
003      
CZ-PrNML
005      
20221031101255.0
007      
ta
008      
221017s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11517-022-02577-1 $2 doi
035    __
$a (PubMed)35644821
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Goldstein, Yoav $u Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel. yoav.goldstein@mail.huji.ac.il $1 https://orcid.org/http://orcid.org/000000020896773X
245    10
$a Chest area segmentation in 3D images of sleeping patients / $c Y. Goldstein, M. Schätz, M. Avigal
520    9_
$a Although the field of sleep study has greatly developed over recent years, the most common and efficient way to detect sleep issues remains a sleep examination performed in a sleep laboratory. This examination measures several vital signals by polysomnograph during a full night's sleep using multiple sensors connected to the patient's body. Nevertheless, despite being the gold standard, the sensors and the unfamiliar environment's connection inevitably impact the quality of the patient's sleep and the examination itself. Therefore, with the novel development of accurate and affordable 3D sensing devices, new approaches for non-contact sleep study have emerged. These methods utilize different techniques to extract the same breathing parameters but with contactless methods. However, to enable reliable remote extraction, these methods require accurate identification of the basic region of interest (ROI), i.e., the patient's chest area. The lack of automated ROI segmenting of 3D time series is currently holding back the development process. We propose an automatic chest area segmentation algorithm that given a time series of 3D frames containing a sleeping patient as input outputs a segmentation image with the pixels that correspond to the chest area. Beyond significantly speeding up the development process of the non-contact methods, accurate automatic segmentation can enable a more precise feature extraction. In addition, further tests of the algorithm on existing data demonstrate its ability to improve the sensitivity of a prior solution that uses manual ROI selection. The approach is on average 46.9% more sensitive with a maximal improvement of 220% when compared to manual ROI. All mentioned can pave the way for placing non-contact algorithms as leading candidates to replace existing traditional methods used today.
650    12
$a algoritmy $7 D000465
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    12
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a polysomnografie $7 D017286
650    _2
$a dýchání $7 D012119
650    _2
$a spánek $7 D012890
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schätz, Martin $u Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic $1 https://orcid.org/http://orcid.org/0000000309314017
700    1_
$a Avigal, Mireille $u Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel
773    0_
$w MED00003217 $t Medical & biological engineering & computing $x 1741-0444 $g Roč. 60, č. 8 (2022), s. 2159-2172
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35644821 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031101253 $b ABA008
999    __
$a ok $b bmc $g 1854674 $s 1176370
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 60 $c 8 $d 2159-2172 $e 20220530 $i 1741-0444 $m Medical & biological engineering & computing $n Med Biol Eng Comput $x MED00003217
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...