-
Je něco špatně v tomto záznamu ?
Comparative analysis of wavelet transform filtering systems for noise reduction in ultrasound images
D. Vilimek, J. Kubicek, M. Golian, R. Jaros, R. Kahankova, P. Hanzlikova, D. Barvik, A. Krestanova, M. Penhaker, M. Cerny, O. Prokop, M. Buzga
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- algoritmy * MeSH
- poměr signál - šum MeSH
- ultrasonografie MeSH
- vlnková analýza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wavelet transform (WT) is a commonly used method for noise suppression and feature extraction from biomedical images. The selection of WT system settings significantly affects the efficiency of denoising procedure. This comparative study analyzed the efficacy of the proposed WT system on real 292 ultrasound images from several areas of interest. The study investigates the performance of the system for different scaling functions of two basic wavelet bases, Daubechies and Symlets, and their efficiency on images artificially corrupted by three kinds of noise. To evaluate our extensive analysis, we used objective metrics, namely structural similarity index (SSIM), correlation coefficient, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and universal image quality index (Q-index). Moreover, this study includes clinical insights on selected filtration outcomes provided by clinical experts. The results show that the efficiency of the filtration strongly depends on the specific wavelet system setting, type of ultrasound data, and the noise present. The findings presented may provide a useful guideline for researchers, software developers, and clinical professionals to obtain high quality images.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22025260
- 003
- CZ-PrNML
- 005
- 20221031101346.0
- 007
- ta
- 008
- 221017s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0270745 $2 doi
- 035 __
- $a (PubMed)35797331
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vilimek, Dominik $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/0000000337811280
- 245 10
- $a Comparative analysis of wavelet transform filtering systems for noise reduction in ultrasound images / $c D. Vilimek, J. Kubicek, M. Golian, R. Jaros, R. Kahankova, P. Hanzlikova, D. Barvik, A. Krestanova, M. Penhaker, M. Cerny, O. Prokop, M. Buzga
- 520 9_
- $a Wavelet transform (WT) is a commonly used method for noise suppression and feature extraction from biomedical images. The selection of WT system settings significantly affects the efficiency of denoising procedure. This comparative study analyzed the efficacy of the proposed WT system on real 292 ultrasound images from several areas of interest. The study investigates the performance of the system for different scaling functions of two basic wavelet bases, Daubechies and Symlets, and their efficiency on images artificially corrupted by three kinds of noise. To evaluate our extensive analysis, we used objective metrics, namely structural similarity index (SSIM), correlation coefficient, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and universal image quality index (Q-index). Moreover, this study includes clinical insights on selected filtration outcomes provided by clinical experts. The results show that the efficiency of the filtration strongly depends on the specific wavelet system setting, type of ultrasound data, and the noise present. The findings presented may provide a useful guideline for researchers, software developers, and clinical professionals to obtain high quality images.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a ultrasonografie $7 D014463
- 650 12
- $a vlnková analýza $7 D058067
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kubicek, Jan $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Golian, Milos $u Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Jaros, Rene $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Kahankova, Radana $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Hanzlikova, Pavla $u Department of Imaging Method, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Barvik, Daniel $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/0000000176998792
- 700 1_
- $a Krestanova, Alice $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Penhaker, Marek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Cerny, Martin $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Prokop, Ondrej $u MEDIN, a.s., Nove Mesto na Morave, Czech Republic
- 700 1_
- $a Buzga, Marek $u Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic $u Deparment of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/000000029554737X
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 17, č. 7 (2022), s. e0270745
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35797331 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031101344 $b ABA008
- 999 __
- $a ok $b bmc $g 1854789 $s 1176550
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 17 $c 7 $d e0270745 $e 20220707 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20221017