-
Je něco špatně v tomto záznamu ?
Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
S. Magalhaes-Novais, J. Blecha, R. Naraine, J. Mikesova, P. Abaffy, A. Pecinova, M. Milosevic, R. Bohuslavova, J. Prochazka, S. Khan, E. Novotna, R. Sindelka, R. Machan, M. Dewerchin, E. Vlcak, J. Kalucka, S. Stemberkova Hubackova, A. Benda, J....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2005 do Před 1 rokem
PubMed Central
od 2006 do Před 1 rokem
Europe PubMed Central
od 2008 do Před 1 rokem
- MeSH
- adenosintrifosfát metabolismus MeSH
- autofagie * MeSH
- cystein metabolismus MeSH
- dextrany metabolismus MeSH
- dýchání MeSH
- endoteliální buňky metabolismus MeSH
- fibroblasty metabolismus MeSH
- formaldehyd metabolismus MeSH
- fosfatidylethanolaminy metabolismus MeSH
- idiopatické střevní záněty * metabolismus MeSH
- isothiokyanatany MeSH
- lidé MeSH
- lipopolysacharidy metabolismus MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie metabolismus MeSH
- mTORC1 metabolismus MeSH
- myši MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sirolimus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
Aarhus Institute of Advanced Studies Aarhus University Aarhus C Denmark
Department of Biomedicine Aarhus University Aarhus Denmark
Faculty of Science Charles University Prague Czech Republic
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
School of Medical Science Griffith University Southport Qld Australia
VIB KU Leuven Center for Cancer Biology Department of Oncology KU Leuven Leuven Belgium
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22033232
- 003
- CZ-PrNML
- 005
- 20230131151248.0
- 007
- ta
- 008
- 230120s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1080/15548627.2022.2038898 $2 doi
- 035 __
- $a (PubMed)35258392
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Magalhaes-Novais, Silvia $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
- 245 10
- $a Mitochondrial respiration supports autophagy to provide stress resistance during quiescence / $c S. Magalhaes-Novais, J. Blecha, R. Naraine, J. Mikesova, P. Abaffy, A. Pecinova, M. Milosevic, R. Bohuslavova, J. Prochazka, S. Khan, E. Novotna, R. Sindelka, R. Machan, M. Dewerchin, E. Vlcak, J. Kalucka, S. Stemberkova Hubackova, A. Benda, J. Goveia, T. Mracek, C. Barinka, P. Carmeliet, J. Neuzil, K. Rohlenova, J. Rohlena
- 520 9_
- $a Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
- 650 _2
- $a proteinkinasy aktivované AMP $x metabolismus $7 D055372
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a autofagie $7 D001343
- 650 _2
- $a cystein $x metabolismus $7 D003545
- 650 _2
- $a mitochondriální DNA $x metabolismus $7 D004272
- 650 _2
- $a dextrany $x metabolismus $7 D003911
- 650 _2
- $a endoteliální buňky $x metabolismus $7 D042783
- 650 _2
- $a fibroblasty $x metabolismus $7 D005347
- 650 _2
- $a formaldehyd $x metabolismus $7 D005557
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a idiopatické střevní záněty $x metabolismus $7 D015212
- 650 _2
- $a isothiokyanatany $7 D017879
- 650 _2
- $a lipopolysacharidy $x metabolismus $7 D008070
- 650 _2
- $a mTORC1 $x metabolismus $7 D000076222
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a proteiny asociované s mikrotubuly $x metabolismus $7 D008869
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a fosfatidylethanolaminy $x metabolismus $7 D010714
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a dýchání $7 D012119
- 650 _2
- $a sirolimus $7 D020123
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Blecha, Jan $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Naraine, Ravindra $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Mikesova, Jana $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Abaffy, Pavel $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Pecinova, Alena $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Milosevic, Mirko $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
- 700 1_
- $a Bohuslavova, Romana $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Prochazka, Jan $u Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Khan, Shawez $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- 700 1_
- $a Novotna, Eliska $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
- 700 1_
- $a Sindelka, Radek $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- 700 1_
- $a Machan, Radek $u Faculty of Science, Charles University, Prague, Czech Republic
- 700 1_
- $a Dewerchin, Mieke $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- 700 1_
- $a Vlcak, Erik $u Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Kalucka, Joanna $u Department of Biomedicine, Aarhus University, Aarhus, Denmark $u Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark $1 https://orcid.org/0000000348877672
- 700 1_
- $a Stemberkova Hubackova, Sona $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic $1 https://orcid.org/0000000234546840
- 700 1_
- $a Benda, Ales $u Faculty of Science, Charles University, Prague, Czech Republic
- 700 1_
- $a Goveia, Jermaine $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- 700 1_
- $a Mracek, Tomas $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000294920718
- 700 1_
- $a Barinka, Cyril $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $1 https://orcid.org/0000000327513060
- 700 1_
- $a Carmeliet, Peter $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium $u Department of Biomedicine, Aarhus University, Aarhus, Denmark $u State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- 700 1_
- $a Neuzil, Jiri $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u School of Medical Science, Griffith University, Southport, Qld, Australia $1 https://orcid.org/0000000224782460
- 700 1_
- $a Rohlenova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium $1 https://orcid.org/0000000339648472
- 700 1_
- $a Rohlena, Jakub $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $1 https://orcid.org/0000000154276502
- 773 0_
- $w MED00184413 $t Autophagy $x 1554-8635 $g Roč. 18, č. 10 (2022), s. 2409-2426
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35258392 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131151244 $b ABA008
- 999 __
- $a ok $b bmc $g 1891792 $s 1184567
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 18 $c 10 $d 2409-2426 $e 20220308 $i 1554-8635 $m Autophagy $n Autophagy $x MED00184413
- LZP __
- $a Pubmed-20230120