• Je něco špatně v tomto záznamu ?

Mitochondrial respiration supports autophagy to provide stress resistance during quiescence

S. Magalhaes-Novais, J. Blecha, R. Naraine, J. Mikesova, P. Abaffy, A. Pecinova, M. Milosevic, R. Bohuslavova, J. Prochazka, S. Khan, E. Novotna, R. Sindelka, R. Machan, M. Dewerchin, E. Vlcak, J. Kalucka, S. Stemberkova Hubackova, A. Benda, J....

. 2022 ; 18 (10) : 2409-2426. [pub] 20220308

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22033232
E-zdroje Online Plný text

NLK Free Medical Journals od 2005 do Před 1 rokem
PubMed Central od 2006 do Před 1 rokem
Europe PubMed Central od 2008 do Před 1 rokem

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22033232
003      
CZ-PrNML
005      
20230131151248.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1080/15548627.2022.2038898 $2 doi
035    __
$a (PubMed)35258392
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Magalhaes-Novais, Silvia $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
245    10
$a Mitochondrial respiration supports autophagy to provide stress resistance during quiescence / $c S. Magalhaes-Novais, J. Blecha, R. Naraine, J. Mikesova, P. Abaffy, A. Pecinova, M. Milosevic, R. Bohuslavova, J. Prochazka, S. Khan, E. Novotna, R. Sindelka, R. Machan, M. Dewerchin, E. Vlcak, J. Kalucka, S. Stemberkova Hubackova, A. Benda, J. Goveia, T. Mracek, C. Barinka, P. Carmeliet, J. Neuzil, K. Rohlenova, J. Rohlena
520    9_
$a Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
650    _2
$a proteinkinasy aktivované AMP $x metabolismus $7 D055372
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a zvířata $7 D000818
650    12
$a autofagie $7 D001343
650    _2
$a cystein $x metabolismus $7 D003545
650    _2
$a mitochondriální DNA $x metabolismus $7 D004272
650    _2
$a dextrany $x metabolismus $7 D003911
650    _2
$a endoteliální buňky $x metabolismus $7 D042783
650    _2
$a fibroblasty $x metabolismus $7 D005347
650    _2
$a formaldehyd $x metabolismus $7 D005557
650    _2
$a lidé $7 D006801
650    12
$a idiopatické střevní záněty $x metabolismus $7 D015212
650    _2
$a isothiokyanatany $7 D017879
650    _2
$a lipopolysacharidy $x metabolismus $7 D008070
650    _2
$a mTORC1 $x metabolismus $7 D000076222
650    _2
$a myši $7 D051379
650    _2
$a proteiny asociované s mikrotubuly $x metabolismus $7 D008869
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a fosfatidylethanolaminy $x metabolismus $7 D010714
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a dýchání $7 D012119
650    _2
$a sirolimus $7 D020123
655    _2
$a časopisecké články $7 D016428
700    1_
$a Blecha, Jan $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Naraine, Ravindra $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Mikesova, Jana $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Abaffy, Pavel $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Pecinova, Alena $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Milosevic, Mirko $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Bohuslavova, Romana $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Prochazka, Jan $u Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Khan, Shawez $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Novotna, Eliska $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Sindelka, Radek $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Machan, Radek $u Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Dewerchin, Mieke $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Vlcak, Erik $u Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Kalucka, Joanna $u Department of Biomedicine, Aarhus University, Aarhus, Denmark $u Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark $1 https://orcid.org/0000000348877672
700    1_
$a Stemberkova Hubackova, Sona $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic $1 https://orcid.org/0000000234546840
700    1_
$a Benda, Ales $u Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Goveia, Jermaine $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
700    1_
$a Mracek, Tomas $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000294920718
700    1_
$a Barinka, Cyril $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $1 https://orcid.org/0000000327513060
700    1_
$a Carmeliet, Peter $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium $u Department of Biomedicine, Aarhus University, Aarhus, Denmark $u State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
700    1_
$a Neuzil, Jiri $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u School of Medical Science, Griffith University, Southport, Qld, Australia $1 https://orcid.org/0000000224782460
700    1_
$a Rohlenova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $u VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium $1 https://orcid.org/0000000339648472
700    1_
$a Rohlena, Jakub $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $1 https://orcid.org/0000000154276502
773    0_
$w MED00184413 $t Autophagy $x 1554-8635 $g Roč. 18, č. 10 (2022), s. 2409-2426
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35258392 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151244 $b ABA008
999    __
$a ok $b bmc $g 1891792 $s 1184567
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 18 $c 10 $d 2409-2426 $e 20220308 $i 1554-8635 $m Autophagy $n Autophagy $x MED00184413
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...