-
Je něco špatně v tomto záznamu ?
Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models
M. Deulofeu, EM. Peña-Méndez, P. Vaňhara, J. Havel, L. Moráň, L. Pečinka, A. Bagó-Mas, E. Verdú, V. Salvadó, P. Boadas-Vaello
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bolest diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Department of Chemistry Faculty of Science University of Girona 17071 Girona Catalonia Spain
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23004562
- 003
- CZ-PrNML
- 005
- 20240327140942.0
- 007
- ta
- 008
- 230418s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acschemneuro.2c00665 $2 doi
- 035 __
- $a (PubMed)36584284
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Deulofeu, Meritxell $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- 245 10
- $a Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models / $c M. Deulofeu, EM. Peña-Méndez, P. Vaňhara, J. Havel, L. Moráň, L. Pečinka, A. Bagó-Mas, E. Verdú, V. Salvadó, P. Boadas-Vaello
- 520 9_
- $a Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
- 650 12
- $a umělá inteligence $7 D001185
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a bolest $x diagnóza $7 D010146
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Peña-Méndez, Eladia M $u Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain $1 https://orcid.org/0000000214743134
- 700 1_
- $a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $1 https://orcid.org/000000027470177X $7 xx0106079
- 700 1_
- $a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $1 https://orcid.org/0000000266755671
- 700 1_
- $a Moráň, Lukáš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic $u Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic $7 xx0312627
- 700 1_
- $a Pečinka, Lukáš, $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $d 1994- $7 xx0315645
- 700 1_
- $a Bagó-Mas, Anna $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
- 700 1_
- $a Verdú, Enrique $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
- 700 1_
- $a Salvadó, Victoria $u Department of Chemistry, Faculty of Science, University of Girona, 17071 Girona, Catalonia, Spain $1 https://orcid.org/000000021171141X
- 700 1_
- $a Boadas-Vaello, Pere $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain $1 https://orcid.org/0000000184971207
- 773 0_
- $w MED00193636 $t ACS chemical neuroscience $x 1948-7193 $g Roč. 14, č. 2 (2023), s. 300-311
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36584284 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20240327140914 $b ABA008
- 999 __
- $a ok $b bmc $g 1924948 $s 1190771
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 14 $c 2 $d 300-311 $e 20221230 $i 1948-7193 $m ACS chemical neuroscience $n ACS Chem Neurosci $x MED00193636
- LZP __
- $a Pubmed-20230418