Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models

M. Deulofeu, EM. Peña-Méndez, P. Vaňhara, J. Havel, L. Moráň, L. Pečinka, A. Bagó-Mas, E. Verdú, V. Salvadó, P. Boadas-Vaello

. 2023 ; 14 (2) : 300-311. [pub] 20221230

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23004562

Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23004562
003      
CZ-PrNML
005      
20240327140942.0
007      
ta
008      
230418s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acschemneuro.2c00665 $2 doi
035    __
$a (PubMed)36584284
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Deulofeu, Meritxell $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
245    10
$a Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models / $c M. Deulofeu, EM. Peña-Méndez, P. Vaňhara, J. Havel, L. Moráň, L. Pečinka, A. Bagó-Mas, E. Verdú, V. Salvadó, P. Boadas-Vaello
520    9_
$a Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
650    _2
$a lidé $7 D006801
650    _2
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
650    12
$a umělá inteligence $7 D001185
650    12
$a neuronové sítě $7 D016571
650    _2
$a bolest $x diagnóza $7 D010146
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Peña-Méndez, Eladia M $u Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain $1 https://orcid.org/0000000214743134
700    1_
$a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $1 https://orcid.org/000000027470177X $7 xx0106079
700    1_
$a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $1 https://orcid.org/0000000266755671
700    1_
$a Moráň, Lukáš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic $u Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic $7 xx0312627
700    1_
$a Pečinka, Lukáš, $u Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic $d 1994- $7 xx0315645
700    1_
$a Bagó-Mas, Anna $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
700    1_
$a Verdú, Enrique $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
700    1_
$a Salvadó, Victoria $u Department of Chemistry, Faculty of Science, University of Girona, 17071 Girona, Catalonia, Spain $1 https://orcid.org/000000021171141X
700    1_
$a Boadas-Vaello, Pere $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain $1 https://orcid.org/0000000184971207
773    0_
$w MED00193636 $t ACS chemical neuroscience $x 1948-7193 $g Roč. 14, č. 2 (2023), s. 300-311
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36584284 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20240327140914 $b ABA008
999    __
$a ok $b bmc $g 1924948 $s 1190771
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 14 $c 2 $d 300-311 $e 20221230 $i 1948-7193 $m ACS chemical neuroscience $n ACS Chem Neurosci $x MED00193636
LZP    __
$a Pubmed-20230418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...