-
Je něco špatně v tomto záznamu ?
The role of the DE and EF loop of BKPyV VP1 in the serological cross-reactivity between subtypes
A. Hejtmánková, H. Caisová, T. Tomanová, H. Španielová
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- ELISA MeSH
- ledviny MeSH
- lidé MeSH
- nemoci ledvin * MeSH
- sérotypizace MeSH
- transplantace ledvin * MeSH
- virus BK * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23004582
- 003
- CZ-PrNML
- 005
- 20230425171615.0
- 007
- ta
- 008
- 230418s2023 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.virusres.2022.199031 $2 doi
- 035 __
- $a (PubMed)36587871
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hejtmánková, Alžběta $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- 245 14
- $a The role of the DE and EF loop of BKPyV VP1 in the serological cross-reactivity between subtypes / $c A. Hejtmánková, H. Caisová, T. Tomanová, H. Španielová
- 520 9_
- $a BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a transplantace ledvin $7 D016030
- 650 _2
- $a ledviny $7 D007668
- 650 12
- $a nemoci ledvin $7 D007674
- 650 _2
- $a ELISA $7 D004797
- 650 _2
- $a sérotypizace $7 D012703
- 650 12
- $a virus BK $7 D001739
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Caisová, Helena $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- 700 1_
- $a Tomanová, Tereza $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- 700 1_
- $a Španielová, Hana $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 166 10, Praha 5, Czech Republic. Electronic address: hana.spanielova@natur.cuni.cz
- 773 0_
- $w MED00004666 $t Virus research $x 1872-7492 $g Roč. 324, č. - (2023), s. 199031
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36587871 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20230425171612 $b ABA008
- 999 __
- $a ok $b bmc $g 1924961 $s 1190791
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 324 $c - $d 199031 $e 20221229 $i 1872-7492 $m Virus research $n Virus Res $x MED00004666
- LZP __
- $a Pubmed-20230418