• Je něco špatně v tomto záznamu ?

Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification

P. Nejedly, V. Kremen, K. Lepkova, F. Mivalt, V. Sladky, T. Pridalova, F. Plesinger, P. Jurak, M. Pail, M. Brazdil, P. Klimes, G. Worrell

. 2023 ; 13 (1) : 744. [pub] 20230113

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23004604

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23004604
003      
CZ-PrNML
005      
20230425171622.0
007      
ta
008      
230418s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-023-27978-6 $2 doi
035    __
$a (PubMed)36639549
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Nejedly, Petr $u 1St Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. nejedly@isibrno.cz $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic. nejedly@isibrno.cz $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. nejedly@isibrno.cz
245    10
$a Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification / $c P. Nejedly, V. Kremen, K. Lepkova, F. Mivalt, V. Sladky, T. Pridalova, F. Plesinger, P. Jurak, M. Pail, M. Brazdil, P. Klimes, G. Worrell
520    9_
$a Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
650    _2
$a lidé $7 D006801
650    12
$a elektrokortikografie $7 D000069280
650    _2
$a prospektivní studie $7 D011446
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a ROC křivka $7 D012372
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kremen, Vaclav $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. Kremen.Vaclav@mayo.edu $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic. Kremen.Vaclav@mayo.edu
700    1_
$a Lepkova, Kamila $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
700    1_
$a Mivalt, Filip $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
700    1_
$a Sladky, Vladimir $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA
700    1_
$a Pridalova, Tereza $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA
700    1_
$a Plesinger, Filip $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Jurak, Pavel $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Pail, Martin $u 1St Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Brazdil, Milan $u 1St Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
700    1_
$a Klimes, Petr $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Worrell, Gregory $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. Worrell.Gregory@mayo.edu
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 13, č. 1 (2023), s. 744
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36639549 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20230425171619 $b ABA008
999    __
$a ok $b bmc $g 1924975 $s 1190813
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 13 $c 1 $d 744 $e 20230113 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20230418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...