• Je něco špatně v tomto záznamu ?

Quantitation of small molecules from liquid chromatography-mass spectrometric accurate mass datasets using CycloBranch

J. Novák, KA. Schug, V. Havlíček

. 2023 ; 29 (2) : 102-110. [pub] 20230320

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010521

Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]2+ ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]+, [M + Na]+, [M + K]+, [M + Fe-H]2+, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010521
003      
CZ-PrNML
005      
20230801132458.0
007      
ta
008      
230718s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/14690667231164766 $2 doi
035    __
$a (PubMed)37000628
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Novák, Jiří $u Institute of Microbiology, 48311Czech Academy of Sciences, Prague, Czech Republic $u Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000319024304
245    10
$a Quantitation of small molecules from liquid chromatography-mass spectrometric accurate mass datasets using CycloBranch / $c J. Novák, KA. Schug, V. Havlíček
520    9_
$a Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]2+ ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]+, [M + Na]+, [M + K]+, [M + Fe-H]2+, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.
650    _2
$a lidé $7 D006801
650    _2
$a hmotnostní spektrometrie $x metody $7 D013058
650    _2
$a chromatografie kapalinová $x metody $7 D002853
650    12
$a software $7 D012984
650    12
$a algoritmy $7 D000465
650    _2
$a izotopy $7 D007554
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schug, Kevin A $u Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX, USA
700    1_
$a Havlíček, Vladimír $u Institute of Microbiology, 48311Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000286147059 $7 jx20041110004
773    0_
$w MED00169260 $t European journal of mass spectrometry (Chichester, England) $x 1751-6838 $g Roč. 29, č. 2 (2023), s. 102-110
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37000628 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132455 $b ABA008
999    __
$a ok $b bmc $g 1963133 $s 1196786
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 29 $c 2 $d 102-110 $e 20230320 $i 1751-6838 $m European journal of mass spectrometry $n Eur. j. mass spectrom. $x MED00169260
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...