Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer

M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan, CC. Mayorga-Martinez, J. Vyskocil, M. Masarik, M. Pumera

. 2023 ; 19 (17) : e2208259. [pub] 20230126

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010569

Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.

000      
00000naa a2200000 a 4500
001      
bmc23010569
003      
CZ-PrNML
005      
20230801132512.0
007      
ta
008      
230718s2023 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/smll.202208259 $2 doi
035    __
$a (PubMed)36703532
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Ussia, Martina $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000232486725
245    10
$a Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer / $c M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan, CC. Mayorga-Martinez, J. Vyskocil, M. Masarik, M. Pumera
520    9_
$a Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé $7 D006801
650    12
$a cystin $7 D003553
650    _2
$a zinek $7 D015032
650    12
$a nádory prostaty $7 D011471
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Urso, Mario $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000179938138
700    1_
$a Kratochvilova, Monika $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic
700    1_
$a Navratil, Jiri $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic
700    1_
$a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic
700    1_
$a Mayorga-Martinez, Carmen C $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
700    1_
$a Vyskocil, Jan $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
700    1_
$a Masarik, Michal $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
700    1_
$a Pumera, Martin $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic $u Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan $u Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic $u Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea $1 https://orcid.org/0000000158462951 $7 uk2015866290
773    0_
$w MED00008487 $t Small (Weinheim an der Bergstrasse, Germany) $x 1613-6829 $g Roč. 19, č. 17 (2023), s. e2208259
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36703532 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132509 $b ABA008
999    __
$a ok $b bmc $g 1963160 $s 1196834
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 19 $c 17 $d e2208259 $e 20230126 $i 1613-6829 $m Small $n Small $x MED00008487
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...