-
Je něco špatně v tomto záznamu ?
Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer
M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan, CC. Mayorga-Martinez, J. Vyskocil, M. Masarik, M. Pumera
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36703532
DOI
10.1002/smll.202208259
Knihovny.cz E-zdroje
- MeSH
- cystin * MeSH
- lidé MeSH
- nádory prostaty * MeSH
- zinek MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23010569
- 003
- CZ-PrNML
- 005
- 20240903092545.0
- 007
- ta
- 008
- 230718s2023 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/smll.202208259 $2 doi
- 035 __
- $a (PubMed)36703532
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Ussia, Martina $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000232486725
- 245 10
- $a Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer / $c M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan, CC. Mayorga-Martinez, J. Vyskocil, M. Masarik, M. Pumera
- 520 9_
- $a Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a cystin $7 D003553
- 650 _2
- $a zinek $7 D015032
- 650 12
- $a nádory prostaty $7 D011471
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Urso, Mario $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $1 https://orcid.org/0000000179938138
- 700 1_
- $a Kratochvilova, Monika $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic
- 700 1_
- $a Navrátil, Jiří $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $7 xx0266342
- 700 1_
- $a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic
- 700 1_
- $a Mayorga-Martinez, Carmen C $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
- 700 1_
- $a Vyskocil, Jan $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
- 700 1_
- $a Masarik, Michal $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, Brno, CZ-625 00, Czech Republic $u BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- 700 1_
- $a Pumera, Martin $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic $u Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan $u Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic $u Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea $1 https://orcid.org/0000000158462951 $7 uk2015866290
- 773 0_
- $w MED00008487 $t Small $x 1613-6829 $g Roč. 19, č. 17 (2023), s. e2208259
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36703532 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20240903092542 $b ABA008
- 999 __
- $a ok $b bmc $g 1963160 $s 1196834
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 19 $c 17 $d e2208259 $e 20230126 $i 1613-6829 $m Small $n Small $x MED00008487
- LZP __
- $a Pubmed-20230718