-
Something wrong with this record ?
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
K. Sherratt, H. Gruson, R. Grah, H. Johnson, R. Niehus, B. Prasse, F. Sandmann, J. Deuschel, D. Wolffram, S. Abbott, A. Ullrich, G. Gibson, EL. Ray, NG. Reich, D. Sheldon, Y. Wang, N. Wattanachit, L. Wang, J. Trnka, G. Obozinski, T. Sun, D....
Language English Country England, Great Britain
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.
Grant support
210758/Z/18/Z
Wellcome Trust - United Kingdom
R35 GM119582
NIGMS NIH HHS - United States
Department of Health - United Kingdom
R01 GM109718
NIGMS NIH HHS - United States
NLK
Directory of Open Access Journals
from 2013
Free Medical Journals
from 2012
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2012-01-01
Open Access Digital Library
from 2012-01-01
Open Access Digital Library
from 2013-01-01
Health & Medicine (ProQuest)
from 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2012
PubMed
37083521
DOI
10.7554/elife.81916
Knihovny.cz E-resources
- MeSH
- COVID-19 * diagnosis epidemiology MeSH
- Epidemics * MeSH
- Communicable Diseases * MeSH
- Humans MeSH
- Forecasting MeSH
- Retrospective Studies MeSH
- Models, Statistical MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).
3rd Faculty of Medicine Charles University Prague Czech Republic
Boston Children's Hospital and Harvard Medical School Boston United States
Ecole Polytechnique Federale de Lausanne Lausanne Switzerland
Éducation nationale Valbonne France
Eidgenossische Technische Hochschule Zurich Switzerland
European Centre for Disease Prevention and Control Stockholm Sweden
Forschungszentrum Jülich GmbH Jülich Germany
Frankfurt Institute for Advanced Studies Frankfurt Germany
Fraunhofer Institute for Industrial Mathematics Kaiserslautern Germany
Heidelberg University Heidelberg Germany
Helmholtz Centre for Infection Research Braunschweig Germany
IEM Inc Baton Rouge United States
Independent researcher Davis United States
Independent researcher Vienna Austria
Institut d'Investigacions Biomèdiques August Pi i Sunyer Universitat Pompeu Fabra Barcelona Spain
Institute of Computer Science of the CAS Prague Czech Republic
Institute of Information Theory and Automation of the CAS Prague Czech Republic
Karlsruhe Institute of Technology Karlsruhe Germany
London School of Hygiene and Tropical Medicine London United Kingdom
Los Alamos National Laboratory Los Alamos United States
Masaryk University Brno Czech Republic
Massachusetts Institute of Technology Cambridge United States
Max Planck Institut für Dynamik und Selbstorganisation Göttingen Germany
Medical University of Gdansk Gdańsk Poland
Paul Scherrer Institute Villigen Switzerland
Politecnico di Milano Milan Italy
Robert Koch Institute Berlin Germany
Technical University of Kaiserlautern Kaiserslautern Germany
Technische Universität Ilmenau Ilmenau Germany
Universidad Carlos 3 de Madrid Leganes Spain
Universidad Nacional de Educación a Distancia Madrid Spain
Universitat de Barcelona Barcelona Spain
Universitat Politècnica de Catalunya Barcelona Spain
Universitat Trier Trier Germany
University of Bialystok Warsaw Poland
University of Cologne Cologne Germany
University of Halle Halle Germany
University of Ljubljana Ljubljana Slovenia
University of Massachusetts Amherst Amherst United States
University of Milano Bicocca Milano Italy
University of Molise Pesche Italy
University of Oxford Oxford United Kingdom
University of Palermo Palermo Italy
University of Pavia Pavia Italy
University of Perugia Perugia Italy
University of Rome La Sapienza Rome Italy
University of Rome Tor Vergata Rome Italy
University of Southern California Los Angeles United States
University of Sydney Sydney Australia
University of Virginia Charlottesville United States
University of Warsaw Warsaw Poland
University of Wroclaw Wroclaw Poland
Universtät Leipzig Leipzig Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011736
- 003
- CZ-PrNML
- 005
- 20230801133307.0
- 007
- ta
- 008
- 230718s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.7554/eLife.81916 $2 doi
- 035 __
- $a (PubMed)37083521
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Sherratt, Katharine $u London School of Hygiene & Tropical Medicine, London, United Kingdom $1 https://orcid.org/0000000320493423
- 245 10
- $a Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations / $c K. Sherratt, H. Gruson, R. Grah, H. Johnson, R. Niehus, B. Prasse, F. Sandmann, J. Deuschel, D. Wolffram, S. Abbott, A. Ullrich, G. Gibson, EL. Ray, NG. Reich, D. Sheldon, Y. Wang, N. Wattanachit, L. Wang, J. Trnka, G. Obozinski, T. Sun, D. Thanou, L. Pottier, E. Krymova, JH. Meinke, MV. Barbarossa, N. Leithauser, J. Mohring, J. Schneider, J. Wlazlo, J. Fuhrmann, B. Lange, I. Rodiah, P. Baccam, H. Gurung, S. Stage, B. Suchoski, J. Budzinski, R. Walraven, I. Villanueva, V. Tucek, M. Smid, M. Zajicek, C. Perez Alvarez, B. Reina, NI. Bosse, SR. Meakin, L. Castro, G. Fairchild, I. Michaud, D. Osthus, P. Alaimo Di Loro, A. Maruotti, V. Eclerova, A. Kraus, D. Kraus, L. Pribylova, B. Dimitris, ML. Li, S. Saksham, J. Dehning, S. Mohr, V. Priesemann, G. Redlarski, B. Bejar, G. Ardenghi, N. Parolini, G. Ziarelli, W. Bock, S. Heyder, T. Hotz, DE. Singh, M. Guzman-Merino, JL. Aznarte, D. Morina, S. Alonso, E. Alvarez, D. Lopez, C. Prats, JP. Burgard, A. Rodloff, T. Zimmermann, A. Kuhlmann, J. Zibert, F. Pennoni, F. Divino, M. Catala, G. Lovison, P. Giudici, B. Tarantino, F. Bartolucci, G. Jona Lasinio, M. Mingione, A. Farcomeni, A. Srivastava, P. Montero-Manso, A. Adiga, B. Hurt, B. Lewis, M. Marathe, P. Porebski, S. Venkatramanan, RP. Bartczuk, F. Dreger, A. Gambin, K. Gogolewski, M. Gruziel-Slomka, B. Krupa, A. Moszyński, K. Niedzielewski, J. Nowosielski, M. Radwan, F. Rakowski, M. Semeniuk, E. Szczurek, J. Zielinski, J. Kisielewski, B. Pabjan, K. Holger, Y. Kheifetz, M. Scholz, B. Przemyslaw, M. Bodych, M. Filinski, R. Idzikowski, T. Krueger, T. Ozanski, J. Bracher, S. Funk
- 520 9_
- $a BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a infekční nemoci $7 D003141
- 650 12
- $a COVID-19 $x diagnóza $x epidemiologie $7 D000086382
- 650 12
- $a epidemie $7 D058872
- 650 _2
- $a předpověď $7 D005544
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a retrospektivní studie $7 D012189
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a Research Support, U.S. Gov't, P.H.S. $7 D013487
- 700 1_
- $a Gruson, Hugo $u London School of Hygiene & Tropical Medicine, London, United Kingdom
- 700 1_
- $a Grah, Rok $u European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- 700 1_
- $a Johnson, Helen $u European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- 700 1_
- $a Niehus, Rene $u European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- 700 1_
- $a Prasse, Bastian $u European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- 700 1_
- $a Sandmann, Frank $u European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- 700 1_
- $a Deuschel, Jannik $u Karlsruhe Institute of Technology, Karlsruhe, Germany
- 700 1_
- $a Wolffram, Daniel $u Karlsruhe Institute of Technology, Karlsruhe, Germany $1 https://orcid.org/0000000303183669
- 700 1_
- $a Abbott, Sam $u London School of Hygiene & Tropical Medicine, London, United Kingdom
- 700 1_
- $a Ullrich, Alexander $u Robert Koch Institute, Berlin, Germany
- 700 1_
- $a Gibson, Graham $u University of Massachusetts Amherst, Amherst, United States
- 700 1_
- $a Ray, Evan L $u University of Massachusetts Amherst, Amherst, United States
- 700 1_
- $a Reich, Nicholas G $u University of Massachusetts Amherst, Amherst, United States
- 700 1_
- $a Sheldon, Daniel $u University of Massachusetts Amherst, Amherst, United States
- 700 1_
- $a Wang, Yijin $u University of Massachusetts Amherst, Amherst, United States $1 https://orcid.org/0000000344386366
- 700 1_
- $a Wattanachit, Nutcha $u University of Massachusetts Amherst, Amherst, United States
- 700 1_
- $a Wang, Lijing $u Boston Children's Hospital and Harvard Medical School, Boston, United States
- 700 1_
- $a Trnka, Jan $u Third Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000217867562
- 700 1_
- $a Obozinski, Guillaume $u Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- 700 1_
- $a Sun, Tao $u Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland $1 https://orcid.org/0000000163576726
- 700 1_
- $a Thanou, Dorina $u Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- 700 1_
- $a Pottier, Loic $u Éducation nationale, Valbonne, France
- 700 1_
- $a Krymova, Ekaterina $u Eidgenossische Technische Hochschule, Zurich, Switzerland
- 700 1_
- $a Meinke, Jan H $u Forschungszentrum Jülich GmbH, Jülich, Germany
- 700 1_
- $a Barbarossa, Maria Vittoria $u Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- 700 1_
- $a Leithauser, Neele $u Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
- 700 1_
- $a Mohring, Jan $u Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
- 700 1_
- $a Schneider, Johanna $u Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany $1 https://orcid.org/0000000293302838
- 700 1_
- $a Wlazlo, Jaroslaw $u Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
- 700 1_
- $a Fuhrmann, Jan $u Heidelberg University, Heidelberg, Germany $1 https://orcid.org/0000000270913740
- 700 1_
- $a Lange, Berit $u Helmholtz Centre for Infection Research, Braunschweig, Germany
- 700 1_
- $a Rodiah, Isti $u Helmholtz Centre for Infection Research, Braunschweig, Germany
- 700 1_
- $a Baccam, Prasith $u IEM, Inc, Bel Air, United States
- 700 1_
- $a Gurung, Heidi $u IEM, Inc, Bel Air, United States
- 700 1_
- $a Stage, Steven $u IEM, Inc, Baton Rouge, United States
- 700 1_
- $a Suchoski, Bradley $u IEM, Inc, Bel Air, United States
- 700 1_
- $a Budzinski, Jozef $u Independent researcher, Vienna, Austria
- 700 1_
- $a Walraven, Robert $u Independent researcher, Davis, United States
- 700 1_
- $a Villanueva, Inmaculada $u Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat Pompeu Fabra, Barcelona, Spain $1 https://orcid.org/000000034940085X
- 700 1_
- $a Tucek, Vit $u Institute of Computer Science of the CAS, Prague, Czech Republic
- 700 1_
- $a Smid, Martin $u Institute of Information Theory and Automation of the CAS, Prague, Czech Republic
- 700 1_
- $a Zajicek, Milan $u Institute of Information Theory and Automation of the CAS, Prague, Czech Republic $1 https://orcid.org/0000000232267266
- 700 1_
- $a Perez Alvarez, Cesar $u Inverence, Madrid, Spain
- 700 1_
- $a Reina, Borja $u Inverence, Madrid, Spain
- 700 1_
- $a Bosse, Nikos I $u London School of Hygiene & Tropical Medicine, London, United Kingdom
- 700 1_
- $a Meakin, Sophie R $u London School of Hygiene & Tropical Medicine, London, United Kingdom
- 700 1_
- $a Castro, Lauren $u Los Alamos National Laboratory, Los Alamos, United States
- 700 1_
- $a Fairchild, Geoffrey $u Los Alamos National Laboratory, Los Alamos, United States
- 700 1_
- $a Michaud, Isaac $u Los Alamos National Laboratory, Los Alamos, United States
- 700 1_
- $a Osthus, Dave $u Los Alamos National Laboratory, Los Alamos, United States
- 700 1_
- $a Alaimo Di Loro, Pierfrancesco $u LUMSA University, Rome, Italy
- 700 1_
- $a Maruotti, Antonello $u LUMSA University, Rome, Italy $1 https://orcid.org/0000000183779950
- 700 1_
- $a Eclerova, Veronika $u Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000184767740
- 700 1_
- $a Kraus, Andrea $u Masaryk University, Brno, Czech Republic
- 700 1_
- $a Kraus, David $u Masaryk University, Brno, Czech Republic
- 700 1_
- $a Pribylova, Lenka $u Masaryk University, Brno, Czech Republic
- 700 1_
- $a Dimitris, Bertsimas $u Massachusetts Institute of Technology, Cambridge, United States
- 700 1_
- $a Li, Michael Lingzhi $u Massachusetts Institute of Technology, Cambridge, United States
- 700 1_
- $a Saksham, Soni $u Massachusetts Institute of Technology, Cambridge, United States
- 700 1_
- $a Dehning, Jonas $u Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
- 700 1_
- $a Mohr, Sebastian $u Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
- 700 1_
- $a Priesemann, Viola $u Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany $1 https://orcid.org/0000000189055873
- 700 1_
- $a Redlarski, Grzegorz $u Medical University of Gdansk, Gdańsk, Poland
- 700 1_
- $a Bejar, Benjamin $u Paul Scherrer Institute, Villigen, Switzerland
- 700 1_
- $a Ardenghi, Giovanni $u Politecnico di Milano, Milan, Italy
- 700 1_
- $a Parolini, Nicola $u Politecnico di Milano, Milan, Italy
- 700 1_
- $a Ziarelli, Giovanni $u Politecnico di Milano, Milan, Italy
- 700 1_
- $a Bock, Wolfgang $u Technical University of Kaiserlautern, Kaiserslautern, Germany
- 700 1_
- $a Heyder, Stefan $u Technische Universität Ilmenau, Ilmenau, Germany
- 700 1_
- $a Hotz, Thomas $u Technische Universität Ilmenau, Ilmenau, Germany
- 700 1_
- $a Singh, David E $u Universidad Carlos III de Madrid, Leganes, Spain
- 700 1_
- $a Guzman-Merino, Miguel $u Universidad Carlos III de Madrid, Leganes, Spain
- 700 1_
- $a Aznarte, Jose L $u Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- 700 1_
- $a Morina, David $u Universitat de Barcelona, Barcelona, Spain
- 700 1_
- $a Alonso, Sergio $u Universitat Politècnica de Catalunya, Barcelona, Spain $1 https://orcid.org/0000000239898757
- 700 1_
- $a Alvarez, Enric $u Universitat Politècnica de Catalunya, Barcelona, Spain
- 700 1_
- $a Lopez, Daniel $u Universitat Politècnica de Catalunya, Barcelona, Spain
- 700 1_
- $a Prats, Clara $u Universitat Politècnica de Catalunya, Barcelona, Spain $1 https://orcid.org/0000000213987559
- 700 1_
- $a Burgard, Jan Pablo $u Universitat Trier, Trier, Germany $1 https://orcid.org/0000000257716179
- 700 1_
- $a Rodloff, Arne $u University of Cologne, Cologne, Germany
- 700 1_
- $a Zimmermann, Tom $u University of Cologne, Cologne, Germany
- 700 1_
- $a Kuhlmann, Alexander $u University of Halle, Halle, Germany
- 700 1_
- $a Zibert, Janez $u University of Ljubljana, Ljubljana, Slovenia
- 700 1_
- $a Pennoni, Fulvia $u University of Milano-Bicocca, Milano, Italy
- 700 1_
- $a Divino, Fabio $u University of Molise, Pesche, Italy
- 700 1_
- $a Catala, Marti $u University of Oxford, Oxford, United Kingdom
- 700 1_
- $a Lovison, Gianfranco $u University of Palermo, Palermo, Italy
- 700 1_
- $a Giudici, Paolo $u University of Pavia, Pavia, Italy
- 700 1_
- $a Tarantino, Barbara $u University of Pavia, Pavia, Italy
- 700 1_
- $a Bartolucci, Francesco $u University of Perugia, Perugia, Italy
- 700 1_
- $a Jona Lasinio, Giovanna $u University of Rome "La Sapienza", Rome, Italy
- 700 1_
- $a Mingione, Marco $u University of Rome "La Sapienza", Rome, Italy
- 700 1_
- $a Farcomeni, Alessio $u University of Rome "Tor Vergata", Rome, Italy $1 https://orcid.org/0000000271045826
- 700 1_
- $a Srivastava, Ajitesh $u University of Southern California, Los Angeles, United States
- 700 1_
- $a Montero-Manso, Pablo $u University of Sydney, Sydney, Australia
- 700 1_
- $a Adiga, Aniruddha $u University of Virginia, Charlottesville, United States
- 700 1_
- $a Hurt, Benjamin $u University of Virginia, Charlottesville, United States
- 700 1_
- $a Lewis, Bryan $u University of Virginia, Charlottesville, United States $1 https://orcid.org/0000000307936082
- 700 1_
- $a Marathe, Madhav $u University of Virginia, Charlottesville, United States
- 700 1_
- $a Porebski, Przemyslaw $u University of Virginia, Charlottesville, United States $1 https://orcid.org/0000000180125791
- 700 1_
- $a Venkatramanan, Srinivasan $u University of Virginia, Charlottesville, United States
- 700 1_
- $a Bartczuk, Rafal P $u University of Warsaw, Warsaw, Poland $1 https://orcid.org/0000000204337327
- 700 1_
- $a Dreger, Filip $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Gambin, Anna $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Gogolewski, Krzysztof $u University of Warsaw, Warsaw, Poland $1 https://orcid.org/0000000155235198
- 700 1_
- $a Gruziel-Slomka, Magdalena $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Krupa, Bartosz $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Moszyński, Antoni $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Niedzielewski, Karol $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Nowosielski, Jedrzej $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Radwan, Maciej $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Rakowski, Franciszek $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Semeniuk, Marcin $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Szczurek, Ewa $u University of Warsaw, Warsaw, Poland
- 700 1_
- $a Zielinski, Jakub $u University of Warsaw, Warsaw, Poland $1 https://orcid.org/0000000189358137
- 700 1_
- $a Kisielewski, Jan $u University of Warsaw, Warsaw, Poland $u University of Bialystok, Warsaw, Poland
- 700 1_
- $a Pabjan, Barbara $u University of Wroclaw, Wroclaw, Poland
- 700 1_
- $a Holger, Kirsten $u Universtät Leipzig, Leipzig, Germany
- 700 1_
- $a Kheifetz, Yuri $u Universtät Leipzig, Leipzig, Germany
- 700 1_
- $a Scholz, Markus $u Universtät Leipzig, Leipzig, Germany
- 700 1_
- $a Przemyslaw, Biecek $u Warsaw University of Technology, Warsaw, Poland
- 700 1_
- $a Bodych, Marcin $u Wroclaw University of Science and Technology, Wroclaw, Poland
- 700 1_
- $a Filinski, Maciej $u Wroclaw University of Science and Technology, Wroclaw, Poland
- 700 1_
- $a Idzikowski, Radoslaw $u Wroclaw University of Science and Technology, Wroclaw, Poland
- 700 1_
- $a Krueger, Tyll $u Wroclaw University of Science and Technology, Wroclaw, Poland
- 700 1_
- $a Ozanski, Tomasz $u Wroclaw University of Science and Technology, Wroclaw, Poland
- 700 1_
- $a Bracher, Johannes $u Karlsruhe Institute of Technology, Karlsruhe, Germany
- 700 1_
- $a Funk, Sebastian $u London School of Hygiene & Tropical Medicine, London, United Kingdom $1 https://orcid.org/0000000228423406
- 773 0_
- $w MED00188753 $t eLife $x 2050-084X $g Roč. 12, č. - (2023)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37083521 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801133303 $b ABA008
- 999 __
- $a ok $b bmc $g 1963903 $s 1198001
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 12 $c - $e 20230421 $i 2050-084X $m eLife $n eLife $x MED00188753
- GRA __
- $a 210758/Z/18/Z $p Wellcome Trust $2 United Kingdom
- GRA __
- $a R35 GM119582 $p NIGMS NIH HHS $2 United States
- GRA __
- $p Department of Health $2 United Kingdom
- GRA __
- $a R01 GM109718 $p NIGMS NIH HHS $2 United States
- LZP __
- $a Pubmed-20230718