Non-polio enteroviruses (NPEV) cause significant disease worldwide. Population-based sero-surveillance, by measuring antibodies against specific NPEV types, provides additional information on past circulation and the prediction for future upsurges. Virus neutralisation assays (VNA), the current method of choice for measuring NPEV type specific antibodies, are not entirely standardised. Via the European Non-Polio Enterovirus Network, we organised a VNA quality assessment in which twelve laboratories participated. We provided five echovirus (E) types (E1, E18, E30 G2, E30 G6 and E6) and intravenous immunoglobulins (IVIG) as a sample for the NPEV VNA quality assessment. Differences in VNA protocols and neutralising Ab (nAb) titres were found between the participating laboratories with geometric coefficients of variation ranging from 10.3-62.9 %. Mixed-effects regression analysis indicated a small but significant effect of type of cell line used. Harmonisation of cell line passage number, however, did not improve variation between laboratories. Calibration by making use of a reference sample, reduced variation between laboratories but differences in nAb titres remained higher than two log2 dilution steps. In conclusion, sero-surveillance data from different laboratories should be compared with caution and standardised protocols are needed.
- MeSH
- ECHO virové infekce virologie epidemiologie imunologie MeSH
- enterovirové infekce virologie imunologie MeSH
- enterovirus B lidský * imunologie MeSH
- lidé MeSH
- neutralizační testy * metody normy MeSH
- neutralizující protilátky * krev imunologie MeSH
- protilátky virové * krev imunologie MeSH
- séroepidemiologické studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: During the first epidemic wave, COVID-19 surveillance focused on quantifying the magnitude and the escalation of a growing global health crisis. The scientific community first assessed risk through basic indicators, such as the number of cases or rates of new cases and deaths, and later began using other direct impact indicators to conduct more detailed analyses. We aimed at synthesizing the scientific community's contribution to assessing the direct impact of the COVID-19 pandemic on population health through indicators reported in research papers. METHODS: We conducted a rapid scoping review to identify and describe health indicators included in articles published between January 2020 and June 2021, using one strategy to search PubMed, EMBASE and WHO COVID-19 databases. Sixteen experts from European public health institutions screened papers and retrieved indicator characteristics. We also asked in an online survey how the health indicators were added to and used in policy documents in Europe. RESULTS: After reviewing 3891 records, we selected a final sample of 67 articles and 233 indicators. We identified 52 (22.3%) morbidity indicators from 33 articles, 105 severity indicators (45.1%, 27 articles) and 68 mortality indicators (29.2%, 51). Respondents from 22 countries completed 31 questionnaires, and the majority reported morbidity indicators (29, 93.5%), followed by mortality indicators (26, 83.9%). CONCLUSIONS: The indicators collated here might be useful to assess the impact of future pandemics. Therefore, their measurement should be standardized to allow for comparisons between settings, countries and different populations.
- MeSH
- COVID-19 * mortalita epidemiologie MeSH
- lidé MeSH
- morbidita MeSH
- mortalita trendy MeSH
- pandemie MeSH
- stupeň závažnosti nemoci MeSH
- ukazatele zdravotního stavu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in early 2020 and subsequent implementation of public health and social measures (PHSM) disrupted the epidemiology of respiratory viruses. This work describes the epidemiology of respiratory syncytial virus (RSV) observed during two winter seasons (weeks 40-20) and inter-seasonal periods (weeks 21-39) during the pandemic between October 2020 and September 2022. METHODS: Using data submitted to The European Surveillance System (TESSy) by countries or territories in the World Health Organization (WHO) European Region between weeks 40/2020 and 39/2022, we aggregated country-specific weekly RSV counts of sentinel, non-sentinel and Severe Acute Respiratory Infection (SARI) surveillance specimens and calculated percentage positivity. Results for both 2020/21 and 2021/22 seasons and inter-seasons were compared with pre-pandemic 2016/17 to 2019/20 seasons and inter-seasons. RESULTS: Although more specimens were tested than in pre-COVID-19 pandemic seasons, very few RSV detections were reported during the 2020/21 season in all surveillance systems. During the 2021 inter-season, a gradual increase in detections was observed in all systems. In 2021/22, all systems saw early peaks of RSV infection, and during the 2022 inter-seasonal period, patterns of detections were closer to those seen before the COVID-19 pandemic. CONCLUSION: RSV surveillance continued throughout the COVID-19 pandemic, with an initial reduction in transmission, followed by very high and out-of-season RSV circulation (summer 2021) and then an early start of the 2021/22 season. As of the 2022/23 season, RSV circulation had not yet normalised.
BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).
- MeSH
- COVID-19 * diagnóza epidemiologie MeSH
- epidemie * MeSH
- infekční nemoci * MeSH
- lidé MeSH
- předpověď MeSH
- retrospektivní studie MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
BackgroundTick-borne encephalitis (TBE) is a vaccine-preventable disease involving the central nervous system. TBE became a notifiable disease on the EU/EEA level in 2012.AimWe aimed to provide an updated epidemiological assessment of TBE in the EU/EEA, focusing on spatiotemporal changes.MethodsWe performed a descriptive analysis of case characteristics, time and location using data of human TBE cases reported by EU/EEA countries to the European Centre for Disease Prevention and Control with disease onset in 2012-2020. We analysed data at EU/EEA, national, and subnational levels and calculated notification rates using Eurostat population data. Regression models were used for temporal analysis.ResultsFrom 2012 to 2020, 19 countries reported 29,974 TBE cases, of which 24,629 (98.6%) were autochthonous. Czechia, Germany and Lithuania reported 52.9% of all cases. The highest notification rates were recorded in Lithuania, Latvia, and Estonia (16.2, 9.5 and 7.5 cases/100,000 population, respectively). Fifty regions from 10 countries, had a notification rate ≥ 5/100,000. There was an increasing trend in number of cases during the study period with an estimated 0.053 additional TBE cases every week. In 2020, 11.5% more TBE cases were reported than predicted based on data from 2016 to 2019. A geographical spread of cases was observed, particularly in regions situated north-west of known endemic regions.ConclusionA close monitoring of ongoing changes to the TBE epidemiological situation in Europe can support the timely adaption of vaccination recommendations. Further analyses to identify populations and geographical areas where vaccination programmes can be of benefit are needed.
- MeSH
- klíšťová encefalitida * epidemiologie prevence a kontrola MeSH
- lidé MeSH
- vakcinace MeSH
- virové vakcíny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Německo MeSH
Learning from the COVID-19 pandemic and considering the effects of this pandemic, we provide recommendations that can guide towards sustainable RSV surveillance with the potential to be integrated into the broader perspective of respiratory surveillance. https://bit.ly/40TsO0G
IntroductionThe I-MOVE-COVID-19 and VEBIS hospital networks have been measuring COVID-19 vaccine effectiveness (VE) in participating European countries since early 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in patients ≥ 20 years hospitalised with severe acute respiratory infection (SARI) from December 2021 to July 2022 (Omicron-dominant period).MethodsIn both networks, 46 hospitals (13 countries) follow a similar test-negative case-control protocol. We defined complete primary series vaccination (PSV) and first booster dose vaccination as last dose of either vaccine received ≥ 14 days before symptom onset (stratifying first booster into received < 150 and ≥ 150 days after last PSV dose). We measured VE overall, by vaccine category/product, age group and time since first mRNA booster dose, adjusting by site as a fixed effect, and by swab date, age, sex, and presence/absence of at least one commonly collected chronic condition.ResultsWe included 2,779 cases and 2,362 controls. The VE of all vaccine products combined against hospitalisation for laboratory-confirmed SARS-CoV-2 was 43% (95% CI: 29-54) for complete PSV (with last dose received ≥ 150 days before onset), while it was 59% (95% CI: 51-66) after addition of one booster dose. The VE was 85% (95% CI: 78-89), 70% (95% CI: 61-77) and 36% (95% CI: 17-51) for those with onset 14-59 days, 60-119 days and 120-179 days after booster vaccination, respectively.ConclusionsOur results suggest that, during the Omicron period, observed VE against SARI hospitalisation improved with first mRNA booster dose, particularly for those having symptom onset < 120 days after first booster dose.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- dospělí MeSH
- hospitalizace MeSH
- lidé MeSH
- messenger RNA MeSH
- pneumonie * MeSH
- SARS-CoV-2 MeSH
- účinost vakcíny MeSH
- vakcíny proti COVID-19 MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
IntroductionTwo large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March-June)- and Delta (June-December)-dominant periods, 2021.MethodsForty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case-control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset.ResultsWe included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95% CI: 69-92) overall and 75% (95% CI: 42-90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95% CI: 18-74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95% CI: 57-98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90-179 days before onset.ConclusionsOur results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.
- MeSH
- COVID-19 * epidemiologie prevence a kontrola MeSH
- dospělí MeSH
- hospitalizace MeSH
- lidé MeSH
- RNA virová MeSH
- SARS-CoV-2 MeSH
- účinost vakcíny MeSH
- vakcína BNT162 MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes.
- MeSH
- dítě MeSH
- hospitalizace MeSH
- infekce dýchací soustavy * diagnóza epidemiologie MeSH
- infekce respiračními syncytiálními viry * diagnóza epidemiologie prevence a kontrola MeSH
- kojenec MeSH
- lidé MeSH
- lidský respirační syncytiální virus * MeSH
- předškolní dítě MeSH
- senioři MeSH
- sentinelová surveillance MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
IntroductionSequence-based typing of hepatitis A virus (HAV) is important for outbreak detection, investigation and surveillance. In 2013, sequencing was central to resolving a large European Union (EU)-wide outbreak related to frozen berries. However, as the sequenced HAV genome regions were only partly comparable between countries, results were not always conclusive.AimThe objective was to gather information on HAV surveillance and sequencing in EU/European Economic Area (EEA) countries to find ways to harmonise their procedures, for improvement of cross-border outbreak responses.MethodsIn 2014, the European Centre for Disease Prevention and Control (ECDC) conducted a survey on HAV surveillance practices in EU/EEA countries. The survey enquired whether a referral system for confirming primary diagnostics of hepatitis A existed as well as a central collection/storage of hepatitis A cases' samples for typing. Questions on HAV sequencing procedures were also asked. Based on the results, an expert consultation proposed harmonised procedures for cross-border outbreak response, in particular regarding sequencing. In 2016, a follow-up survey assessed uptake of suggested methods.ResultsOf 31 EU/EEA countries, 23 (2014) and 27 (2016) participated. Numbers of countries with central collection and storage of HAV positive samples and of those performing sequencing increased from 12 to 15 and 12 to 14 respectively in 2016, with all countries typing an overlapping fragment of 218 nt. However, variation existed in the sequenced genomic regions and their lengths.ConclusionsWhile HAV sequences in EU/EEA countries are comparable for surveillance, collaboration in sharing and comparing these can be further strengthened.
- MeSH
- epidemický výskyt choroby prevence a kontrola MeSH
- Evropská unie MeSH
- hepatitida A diagnóza epidemiologie MeSH
- lidé MeSH
- molekulární typizace metody MeSH
- RNA virová analýza MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu metody MeSH
- surveillance populace metody MeSH
- virus hepatitidy A genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH