Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A novel artificial intelligence approach to detect the breast cancer using KNNet technique with EPM gene profiling

S. Joshi, NVS. Natteshan, R. Rastogi, A. Sampathkumar, V. Pandimurugan, S. Sountharrajan

. 2023 ; 23 (4) : 302. [pub] 20230918

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016221

Women's most frequent type of cancer is breast cancer, second only to lung cancer. This paper summarizes changes in genomics and epigenetics and incremental biological activities. A tumour develops through a series of phases involving a separate abnormal gene. Even though many diseases cause DNA mutations, most treatments are designed to relieve symptoms rather than change the DNA. Clustering short palindromic repeats (CRISPR) or Cas9 is the primary approach for discovering and confirming tumorigenic genomic targets. A Kohonen neural network with an expression programming model was developed for gene selection. The main problem in genetic selection is reducing the number of features chosen while maintaining accuracy. This purpose is accomplished systematically. In the end, the approach method performed better than the existing quantum squirrel-inspired algorithm and the recurrent neural network oppositional call search algorithm for genetic selection. The KNNet-EPM model used an expression programming approach to identify gene biomarkers for breast cancer. This method was achieved with RAE of 42%, sensitivity of 93%, f1 score of 88%, accuracy of 98%, kappa score of 83%, specificity of 92% and MAE of 30%.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016221
003      
CZ-PrNML
005      
20231026110143.0
007      
ta
008      
231013s2023 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10142-023-01227-5 $2 doi
035    __
$a (PubMed)37721631
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Joshi, Shubham $u Department of Computer Science Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
245    12
$a A novel artificial intelligence approach to detect the breast cancer using KNNet technique with EPM gene profiling / $c S. Joshi, NVS. Natteshan, R. Rastogi, A. Sampathkumar, V. Pandimurugan, S. Sountharrajan
520    9_
$a Women's most frequent type of cancer is breast cancer, second only to lung cancer. This paper summarizes changes in genomics and epigenetics and incremental biological activities. A tumour develops through a series of phases involving a separate abnormal gene. Even though many diseases cause DNA mutations, most treatments are designed to relieve symptoms rather than change the DNA. Clustering short palindromic repeats (CRISPR) or Cas9 is the primary approach for discovering and confirming tumorigenic genomic targets. A Kohonen neural network with an expression programming model was developed for gene selection. The main problem in genetic selection is reducing the number of features chosen while maintaining accuracy. This purpose is accomplished systematically. In the end, the approach method performed better than the existing quantum squirrel-inspired algorithm and the recurrent neural network oppositional call search algorithm for genetic selection. The KNNet-EPM model used an expression programming approach to identify gene biomarkers for breast cancer. This method was achieved with RAE of 42%, sensitivity of 93%, f1 score of 88%, accuracy of 98%, kappa score of 83%, specificity of 92% and MAE of 30%.
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a nádory prsu $x diagnóza $x genetika $7 D001943
650    _2
$a umělá inteligence $7 D001185
650    _2
$a algoritmy $7 D000465
650    12
$a nádory plic $7 D008175
650    _2
$a karcinogeneze $7 D063646
655    _2
$a časopisecké články $7 D016428
700    1_
$a Natteshan, N V S $u School of Computing, Kalasalingam Academy of Research and Education, Krishnan Koil, TN, India
700    1_
$a Rastogi, Ravi $u Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
700    1_
$a Sampathkumar, A $u Department of Applied Cybernetics, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic. sampathkumar.arumugam@uhk.cz
700    1_
$a Pandimurugan, V $u School of Computing, Department of Networking and Communications, SRMIST, Kattankulathur Campus, Chennai, 603203, India
700    1_
$a Sountharrajan, S $u Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, India
773    0_
$w MED00005741 $t Functional & integrative genomics $x 1438-7948 $g Roč. 23, č. 4 (2023), s. 302
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37721631 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026110137 $b ABA008
999    __
$a ok $b bmc $g 2000005 $s 1202583
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 23 $c 4 $d 302 $e 20230918 $i 1438-7948 $m Functional & integrative genomics $n Funct Integr Genomics $x MED00005741
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...