-
Something wrong with this record ?
Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine
A. Heinken, J. Hertel, G. Acharya, DA. Ravcheev, M. Nyga, OE. Okpala, M. Hogan, S. Magnúsdóttir, F. Martinelli, B. Nap, G. Preciat, JN. Edirisinghe, CS. Henry, RMT. Fleming, I. Thiele
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
U19 AG063744
NIA NIH HHS - United States
757922
European Research Council - International
RF1 AG058942
NIA NIH HHS - United States
NLK
ProQuest Central
from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2000-01-01 to 1 year ago
- MeSH
- Genome MeSH
- Genomics MeSH
- Precision Medicine MeSH
- Humans MeSH
- Microbiota * MeSH
- Gastrointestinal Microbiome * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.
APC Microbiome Ireland Cork Ireland
Center for Molecular Medicine University Medical Center Utrecht Utrecht the Netherlands
Computation Institute University of Chicago Chicago IL USA
Czech University of Life Sciences Prague Prague Czech Republic
Department of Psychiatry and Psychotherapy University Medicine Greifswald Greifswald Germany
Division of Microbiology University of Galway Galway Ireland
Integrated BioBank of Luxembourg Dudelange Luxembourg
Leiden Academic Centre for Drug Research Leiden University Leiden the Netherlands
Mathematics and Computer Science Division Argonne National Laboratory Argonne IL USA
Ryan Institute University of Galway Galway Ireland
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016462
- 003
- CZ-PrNML
- 005
- 20231026105806.0
- 007
- ta
- 008
- 231013s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41587-022-01628-0 $2 doi
- 035 __
- $a (PubMed)36658342
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Heinken, Almut $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland $u INSERM UMRS 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), University of Lorraine, Nancy, France $1 https://orcid.org/0000000169388072
- 245 10
- $a Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine / $c A. Heinken, J. Hertel, G. Acharya, DA. Ravcheev, M. Nyga, OE. Okpala, M. Hogan, S. Magnúsdóttir, F. Martinelli, B. Nap, G. Preciat, JN. Edirisinghe, CS. Henry, RMT. Fleming, I. Thiele
- 520 9_
- $a The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a individualizovaná medicína $7 D057285
- 650 _2
- $a genom $7 D016678
- 650 _2
- $a genomika $7 D023281
- 650 12
- $a střevní mikroflóra $x genetika $7 D000069196
- 650 12
- $a mikrobiota $7 D064307
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hertel, Johannes $u School of Medicine, University of Galway, Galway, Ireland $u Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- 700 1_
- $a Acharya, Geeta $u Integrated BioBank of Luxembourg, Dudelange, Luxembourg
- 700 1_
- $a Ravcheev, Dmitry A $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
- 700 1_
- $a Nyga, Malgorzata $u University of Luxembourg, Esch-sur-Alzette, Luxembourg
- 700 1_
- $a Okpala, Onyedika Emmanuel $u Czech University of Life Sciences Prague, Prague, Czech Republic $1 https://orcid.org/0000000230076730
- 700 1_
- $a Hogan, Marcus $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
- 700 1_
- $a Magnúsdóttir, Stefanía $u Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands $1 https://orcid.org/0000000165068696
- 700 1_
- $a Martinelli, Filippo $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
- 700 1_
- $a Nap, Bram $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
- 700 1_
- $a Preciat, German $u Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands $1 https://orcid.org/0000000349039515
- 700 1_
- $a Edirisinghe, Janaka N $u Computation Institute, University of Chicago, Chicago, IL, USA $u Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- 700 1_
- $a Henry, Christopher S $u Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- 700 1_
- $a Fleming, Ronan M T $u School of Medicine, University of Galway, Galway, Ireland $u Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- 700 1_
- $a Thiele, Ines $u School of Medicine, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u Ryan Institute, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u Division of Microbiology, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u APC Microbiome Ireland, Cork, Ireland. ines.thiele@universityofgalway.ie $1 https://orcid.org/0000000280717110
- 773 0_
- $w MED00003457 $t Nature biotechnology $x 1546-1696 $g Roč. 41, č. 9 (2023), s. 1320-1331
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36658342 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105800 $b ABA008
- 999 __
- $a ok $b bmc $g 2000156 $s 1202824
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 41 $c 9 $d 1320-1331 $e 20230119 $i 1546-1696 $m Nature biotechnology $n Nat Biotechnol $x MED00003457
- GRA __
- $a U19 AG063744 $p NIA NIH HHS $2 United States
- GRA __
- $a 757922 $p European Research Council $2 International
- GRA __
- $a RF1 AG058942 $p NIA NIH HHS $2 United States
- LZP __
- $a Pubmed-20231013