Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine

A. Heinken, J. Hertel, G. Acharya, DA. Ravcheev, M. Nyga, OE. Okpala, M. Hogan, S. Magnúsdóttir, F. Martinelli, B. Nap, G. Preciat, JN. Edirisinghe, CS. Henry, RMT. Fleming, I. Thiele

. 2023 ; 41 (9) : 1320-1331. [pub] 20230119

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
U19 AG063744 NIA NIH HHS - United States
757922 European Research Council - International
RF1 AG058942 NIA NIH HHS - United States

E-resources Online Full text

NLK ProQuest Central from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2000-01-01 to 1 year ago

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016462
003      
CZ-PrNML
005      
20231026105806.0
007      
ta
008      
231013s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41587-022-01628-0 $2 doi
035    __
$a (PubMed)36658342
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Heinken, Almut $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland $u INSERM UMRS 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), University of Lorraine, Nancy, France $1 https://orcid.org/0000000169388072
245    10
$a Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine / $c A. Heinken, J. Hertel, G. Acharya, DA. Ravcheev, M. Nyga, OE. Okpala, M. Hogan, S. Magnúsdóttir, F. Martinelli, B. Nap, G. Preciat, JN. Edirisinghe, CS. Henry, RMT. Fleming, I. Thiele
520    9_
$a The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.
650    _2
$a lidé $7 D006801
650    _2
$a individualizovaná medicína $7 D057285
650    _2
$a genom $7 D016678
650    _2
$a genomika $7 D023281
650    12
$a střevní mikroflóra $x genetika $7 D000069196
650    12
$a mikrobiota $7 D064307
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hertel, Johannes $u School of Medicine, University of Galway, Galway, Ireland $u Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
700    1_
$a Acharya, Geeta $u Integrated BioBank of Luxembourg, Dudelange, Luxembourg
700    1_
$a Ravcheev, Dmitry A $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
700    1_
$a Nyga, Malgorzata $u University of Luxembourg, Esch-sur-Alzette, Luxembourg
700    1_
$a Okpala, Onyedika Emmanuel $u Czech University of Life Sciences Prague, Prague, Czech Republic $1 https://orcid.org/0000000230076730
700    1_
$a Hogan, Marcus $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
700    1_
$a Magnúsdóttir, Stefanía $u Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands $1 https://orcid.org/0000000165068696
700    1_
$a Martinelli, Filippo $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
700    1_
$a Nap, Bram $u School of Medicine, University of Galway, Galway, Ireland $u Ryan Institute, University of Galway, Galway, Ireland
700    1_
$a Preciat, German $u Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands $1 https://orcid.org/0000000349039515
700    1_
$a Edirisinghe, Janaka N $u Computation Institute, University of Chicago, Chicago, IL, USA $u Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
700    1_
$a Henry, Christopher S $u Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
700    1_
$a Fleming, Ronan M T $u School of Medicine, University of Galway, Galway, Ireland $u Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
700    1_
$a Thiele, Ines $u School of Medicine, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u Ryan Institute, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u Division of Microbiology, University of Galway, Galway, Ireland. ines.thiele@universityofgalway.ie $u APC Microbiome Ireland, Cork, Ireland. ines.thiele@universityofgalway.ie $1 https://orcid.org/0000000280717110
773    0_
$w MED00003457 $t Nature biotechnology $x 1546-1696 $g Roč. 41, č. 9 (2023), s. 1320-1331
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36658342 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105800 $b ABA008
999    __
$a ok $b bmc $g 2000156 $s 1202824
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 41 $c 9 $d 1320-1331 $e 20230119 $i 1546-1696 $m Nature biotechnology $n Nat Biotechnol $x MED00003457
GRA    __
$a U19 AG063744 $p NIA NIH HHS $2 United States
GRA    __
$a 757922 $p European Research Council $2 International
GRA    __
$a RF1 AG058942 $p NIA NIH HHS $2 United States
LZP    __
$a Pubmed-20231013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...