• Je něco špatně v tomto záznamu ?

Large-scale template-based structural modeling of T-cell receptors with known antigen specificity reveals complementarity features

DS. Shcherbinin, VK. Karnaukhov, IV. Zvyagin, DM. Chudakov, M. Shugay

. 2023 ; 14 (-) : 1224969. [pub] 20230815

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016563

INTRODUCTION: T-cell receptor (TCR) recognition of foreign peptides presented by the major histocompatibility complex (MHC) initiates the adaptive immune response against pathogens. While a large number of TCR sequences specific to different antigenic peptides are known to date, the structural data describing the conformation and contacting residues for TCR-peptide-MHC complexes is relatively limited. In the present study we aim to extend and analyze the set of available structures by performing highly accurate template-based modeling of these complexes using TCR sequences with known specificity. METHODS: Identification of CDR3 sequences and their further clustering, based on available spatial structures, V- and J-genes of corresponding T-cell receptors, and epitopes, was performed using the VDJdb database. Modeling of the selected CDR3 loops was conducted using a stepwise introduction of single amino acid substitutions to the template PDB structures, followed by optimization of the TCR-peptide-MHC contacting interface using the Rosetta package applications. Statistical analysis and recursive feature elimination procedures were carried out on computed energy values and properties of contacting amino acid residues between CDR3 loops and peptides, using R. RESULTS: Using the set of 29 complex templates (including a template with SARS-CoV-2 antigen) and 732 specificity records, we built a database of 1585 model structures carrying substitutions in either TCRα or TCRβ chains with some models representing the result of different mutation pathways for the same final structure. This database allowed us to analyze features of amino acid contacts in TCR - peptide interfaces that govern antigen recognition preferences and interpret these interactions in terms of physicochemical properties of interacting residues. CONCLUSION: Our results provide a methodology for creating high-quality TCR-peptide-MHC models for antigens of interest that can be utilized to predict TCR specificity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016563
003      
CZ-PrNML
005      
20231026105726.0
007      
ta
008      
231013s2023 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fimmu.2023.1224969 $2 doi
035    __
$a (PubMed)37649481
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Shcherbinin, Dmitrii S $u Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia $u Laboratory of Structural Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
245    10
$a Large-scale template-based structural modeling of T-cell receptors with known antigen specificity reveals complementarity features / $c DS. Shcherbinin, VK. Karnaukhov, IV. Zvyagin, DM. Chudakov, M. Shugay
520    9_
$a INTRODUCTION: T-cell receptor (TCR) recognition of foreign peptides presented by the major histocompatibility complex (MHC) initiates the adaptive immune response against pathogens. While a large number of TCR sequences specific to different antigenic peptides are known to date, the structural data describing the conformation and contacting residues for TCR-peptide-MHC complexes is relatively limited. In the present study we aim to extend and analyze the set of available structures by performing highly accurate template-based modeling of these complexes using TCR sequences with known specificity. METHODS: Identification of CDR3 sequences and their further clustering, based on available spatial structures, V- and J-genes of corresponding T-cell receptors, and epitopes, was performed using the VDJdb database. Modeling of the selected CDR3 loops was conducted using a stepwise introduction of single amino acid substitutions to the template PDB structures, followed by optimization of the TCR-peptide-MHC contacting interface using the Rosetta package applications. Statistical analysis and recursive feature elimination procedures were carried out on computed energy values and properties of contacting amino acid residues between CDR3 loops and peptides, using R. RESULTS: Using the set of 29 complex templates (including a template with SARS-CoV-2 antigen) and 732 specificity records, we built a database of 1585 model structures carrying substitutions in either TCRα or TCRβ chains with some models representing the result of different mutation pathways for the same final structure. This database allowed us to analyze features of amino acid contacts in TCR - peptide interfaces that govern antigen recognition preferences and interpret these interactions in terms of physicochemical properties of interacting residues. CONCLUSION: Our results provide a methodology for creating high-quality TCR-peptide-MHC models for antigens of interest that can be utilized to predict TCR specificity.
650    _2
$a lidé $7 D006801
650    12
$a COVID-19 $7 D000086382
650    _2
$a SARS-CoV-2 $7 D000086402
650    _2
$a specificita protilátek $7 D000918
650    _2
$a antigenní specifita receptorů T-buněk $7 D037182
650    _2
$a aminokyseliny $7 D000596
650    _2
$a komplement $7 D003165
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Karnaukhov, Vadim K $u Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
700    1_
$a Zvyagin, Ivan V $u Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
700    1_
$a Chudakov, Dmitriy M $u Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia $u Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia $u Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia $u Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
700    1_
$a Shugay, Mikhail $u Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia $u Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
773    0_
$w MED00181405 $t Frontiers in immunology $x 1664-3224 $g Roč. 14, č. - (2023), s. 1224969
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37649481 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105720 $b ABA008
999    __
$a ok $b bmc $g 2000213 $s 1202925
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 14 $c - $d 1224969 $e 20230815 $i 1664-3224 $m Frontiers in immunology $n Front Immunol $x MED00181405
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...