-
Je něco špatně v tomto záznamu ?
Automated sleep classification with chronic neural implants in freely behaving canines
F. Mivalt, V. Sladky, S. Worrell, NM. Gregg, I. Balzekas, I. Kim, SY. Chang, DR. Montonye, A. Duque-Lopez, M. Krakorova, T. Pridalova, K. Lepkova, BH. Brinkmann, KJ. Miller, JJ. Van Gompel, T. Denison, TJ. Kaufmann, SA. Messina, EK. St Louis, V....
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 NS092882
NINDS NIH HHS - United States
U24 NS113637
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
UH3 NS095495
NINDS NIH HHS - United States
PubMed
37536320
DOI
10.1088/1741-2552/aced21
Knihovny.cz E-zdroje
- MeSH
- bdění fyziologie MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie MeSH
- psi MeSH
- spánek REM fyziologie MeSH
- spánek * fyziologie MeSH
- stadia spánku * fyziologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.
Department of Comparative Medicine Mayo Clinic Rochester MN United States of America
Department of Engineering Science Oxford University Oxford United Kingdom
Department of Neurologic Surgery Mayo Clinic Rochester MN United States of America
Department of Neuroradiology Mayo Clinic Rochester MN United States of America
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016590
- 003
- CZ-PrNML
- 005
- 20231026105711.0
- 007
- ta
- 008
- 231013s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/aced21 $2 doi
- 035 __
- $a (PubMed)37536320
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Mivalt, Filip $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $1 https://orcid.org/0000000206939495
- 245 10
- $a Automated sleep classification with chronic neural implants in freely behaving canines / $c F. Mivalt, V. Sladky, S. Worrell, NM. Gregg, I. Balzekas, I. Kim, SY. Chang, DR. Montonye, A. Duque-Lopez, M. Krakorova, T. Pridalova, K. Lepkova, BH. Brinkmann, KJ. Miller, JJ. Van Gompel, T. Denison, TJ. Kaufmann, SA. Messina, EK. St Louis, V. Kremen, GA. Worrell
- 520 9_
- $a Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.
- 650 _2
- $a psi $7 D004285
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a stadia spánku $x fyziologie $7 D012894
- 650 12
- $a spánek $x fyziologie $7 D012890
- 650 _2
- $a spánek REM $x fyziologie $7 D012895
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a elektrokortikografie $7 D000069280
- 650 _2
- $a bdění $x fyziologie $7 D014851
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Sladky, Vladimir $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
- 700 1_
- $a Worrell, Samuel $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Gregg, Nicholas M $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Balzekas, Irena $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
- 700 1_
- $a Kim, Inyong $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Chang, Su-Youne $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Montonye, Daniel R $u Department of Comparative Medicine, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Duque-Lopez, Andrea $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Krakorova, Martina $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Pridalova, Tereza $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Lepkova, Kamila $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
- 700 1_
- $a Brinkmann, Benjamin H $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000223928608
- 700 1_
- $a Miller, Kai J $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Van Gompel, Jamie J $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Denison, Timothy $u Department of Engineering Science, Oxford University, Oxford, United Kingdom
- 700 1_
- $a Kaufmann, Timothy J $u Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Messina, Steven A $u Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a St Louis, Erik K $u Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Kremen, Vaclav $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000198447617
- 700 1_
- $a Worrell, Gregory A $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000329160553
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 20, č. 4 (2023)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37536320 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105705 $b ABA008
- 999 __
- $a ok $b bmc $g 2000232 $s 1202952
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 20 $c 4 $e 20230810 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- GRA __
- $a R01 NS092882 $p NINDS NIH HHS $2 United States
- GRA __
- $a U24 NS113637 $p NINDS NIH HHS $2 United States
- GRA __
- $a UH2 NS095495 $p NINDS NIH HHS $2 United States
- GRA __
- $a UH3 NS095495 $p NINDS NIH HHS $2 United States
- LZP __
- $a Pubmed-20231013