• Je něco špatně v tomto záznamu ?

Automated sleep classification with chronic neural implants in freely behaving canines

F. Mivalt, V. Sladky, S. Worrell, NM. Gregg, I. Balzekas, I. Kim, SY. Chang, DR. Montonye, A. Duque-Lopez, M. Krakorova, T. Pridalova, K. Lepkova, BH. Brinkmann, KJ. Miller, JJ. Van Gompel, T. Denison, TJ. Kaufmann, SA. Messina, EK. St Louis, V....

. 2023 ; 20 (4) : . [pub] 20230810

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016590

Grantová podpora
R01 NS092882 NINDS NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States

Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016590
003      
CZ-PrNML
005      
20231026105711.0
007      
ta
008      
231013s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/aced21 $2 doi
035    __
$a (PubMed)37536320
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Mivalt, Filip $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $1 https://orcid.org/0000000206939495
245    10
$a Automated sleep classification with chronic neural implants in freely behaving canines / $c F. Mivalt, V. Sladky, S. Worrell, NM. Gregg, I. Balzekas, I. Kim, SY. Chang, DR. Montonye, A. Duque-Lopez, M. Krakorova, T. Pridalova, K. Lepkova, BH. Brinkmann, KJ. Miller, JJ. Van Gompel, T. Denison, TJ. Kaufmann, SA. Messina, EK. St Louis, V. Kremen, GA. Worrell
520    9_
$a Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.
650    _2
$a psi $7 D004285
650    _2
$a zvířata $7 D000818
650    12
$a stadia spánku $x fyziologie $7 D012894
650    12
$a spánek $x fyziologie $7 D012890
650    _2
$a spánek REM $x fyziologie $7 D012895
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a elektrokortikografie $7 D000069280
650    _2
$a bdění $x fyziologie $7 D014851
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Sladky, Vladimir $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
700    1_
$a Worrell, Samuel $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Gregg, Nicholas M $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Balzekas, Irena $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
700    1_
$a Kim, Inyong $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Chang, Su-Youne $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Montonye, Daniel R $u Department of Comparative Medicine, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Duque-Lopez, Andrea $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Krakorova, Martina $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Pridalova, Tereza $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Lepkova, Kamila $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
700    1_
$a Brinkmann, Benjamin H $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000223928608
700    1_
$a Miller, Kai J $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Van Gompel, Jamie J $u Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Denison, Timothy $u Department of Engineering Science, Oxford University, Oxford, United Kingdom
700    1_
$a Kaufmann, Timothy J $u Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Messina, Steven A $u Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a St Louis, Erik K $u Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Kremen, Vaclav $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000198447617
700    1_
$a Worrell, Gregory A $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000329160553
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 20, č. 4 (2023)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37536320 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105705 $b ABA008
999    __
$a ok $b bmc $g 2000232 $s 1202952
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 20 $c 4 $e 20230810 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
GRA    __
$a U24 NS113637 $p NINDS NIH HHS $2 United States
GRA    __
$a UH2 NS095495 $p NINDS NIH HHS $2 United States
GRA    __
$a UH3 NS095495 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...