-
Je něco špatně v tomto záznamu ?
Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m7G-cap-dependent translation at the 8- to 16-cell transition
L. Gahurova, J. Tomankova, P. Cerna, P. Bora, M. Kubickova, G. Virnicchi, K. Kovacovicova, D. Potesil, P. Hruska, Z. Zdrahal, M. Anger, A. Susor, AW. Bruce
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Freely Accessible Science Journals
od 2011-09-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
PubMed
37553074
DOI
10.1098/rsob.230081
Knihovny.cz E-zdroje
- MeSH
- blastocysta * MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný rodokmen MeSH
- embryo savčí * MeSH
- mTORC1 MeSH
- myši MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016638
- 003
- CZ-PrNML
- 005
- 20231026105647.0
- 007
- ta
- 008
- 231013s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1098/rsob.230081 $2 doi
- 035 __
- $a (PubMed)37553074
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Gahurova, Lenka $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic $u Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic $1 https://orcid.org/0000000294127971
- 245 10
- $a Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m7G-cap-dependent translation at the 8- to 16-cell transition / $c L. Gahurova, J. Tomankova, P. Cerna, P. Bora, M. Kubickova, G. Virnicchi, K. Kovacovicova, D. Potesil, P. Hruska, Z. Zdrahal, M. Anger, A. Susor, AW. Bruce
- 520 9_
- $a Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčná diferenciace $x fyziologie $7 D002454
- 650 _2
- $a mTORC1 $7 D000076222
- 650 12
- $a blastocysta $7 D001755
- 650 12
- $a embryo savčí $7 D004622
- 650 _2
- $a buněčný rodokmen $7 D019070
- 650 _2
- $a savci $7 D008322
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Tomankova, Jana $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- 700 1_
- $a Cerna, Pavlina $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- 700 1_
- $a Bora, Pablo $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic $1 https://orcid.org/0000000284005380
- 700 1_
- $a Kubickova, Michaela $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- 700 1_
- $a Virnicchi, Giorgio $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- 700 1_
- $a Kovacovicova, Kristina $u Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic $u Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
- 700 1_
- $a Potesil, David $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- 700 1_
- $a Hruska, Pavel $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic $1 https://orcid.org/000000030705854X
- 700 1_
- $a Zdrahal, Zbynek $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic $u Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- 700 1_
- $a Anger, Martin $u Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic $u Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
- 700 1_
- $a Susor, Andrej $u Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- 700 1_
- $a Bruce, Alexander W $u Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- 773 0_
- $w MED00190574 $t Open biology $x 2046-2441 $g Roč. 13, č. 8 (2023), s. 230081
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37553074 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105641 $b ABA008
- 999 __
- $a ok $b bmc $g 2000263 $s 1203000
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 13 $c 8 $d 230081 $e 20230809 $i 2046-2441 $m Open biology $n Open Biol $x MED00190574
- LZP __
- $a Pubmed-20231013