The risk of post-operative pulmonary complications in lung resection candidates with normal forced expiratory volume in 1 s and diffusing capacity of the lung for carbon monoxide: a prospective multicentre study

. 2023 Mar ; 9 (2) : . [epub] 20230306

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36891072

INTRODUCTION: According to the guidelines for preoperative assessment of lung resection candidates, patients with normal forced expiratory volume in 1 s (FEV1) and diffusing capacity of the lung for carbon monoxide (D LCO) are at low risk for post-operative pulmonary complications (PPC). However, PPC affect hospital length of stay and related healthcare costs. We aimed to assess risk of PPC for lung resection candidates with normal FEV1 and D LCO (>80% predicted) and identify factors associated with PPC. METHODS: 398 patients were prospectively studied at two centres between 2017 and 2021. PPC were recorded from the first 30 post-operative days. Subgroups of patients with and without PPC were compared and factors with significant difference were analysed by uni- and multivariate logistic regression. RESULTS: 188 subjects had normal FEV1 and D LCO. Of these, 17 patients (9%) developed PPC. Patients with PPC had significantly lower pressure of end-tidal carbon dioxide (P ETCO2 ) at rest (27.7 versus 29.9; p=0.033) and higher ventilatory efficiency (V'E/V'CO2 ) slope (31.1 versus 28; p=0.016) compared to those without PPC. Multivariate models showed association between resting P ETCO2 (OR 0.872; p=0.035) and V'E/V'CO2 slope (OR 1.116; p=0.03) and PPC. In both models, thoracotomy was strongly associated with PPC (OR 6.419; p=0.005 and OR 5.884; p=0.007, respectively). Peak oxygen consumption failed to predict PPC (p=0.917). CONCLUSIONS: Resting P ETCO2 adds incremental information for risk prediction of PPC in patients with normal FEV1 and D LCO. We propose resting P ETCO2 be an additional parameter to FEV1 and D LCO for preoperative risk stratification.

Zobrazit více v PubMed

Brunelli A, Charloux A, Bolliger CT, et al. . ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J 2009; 34: 17–41. doi:10.1183/09031936.00184308 PubMed DOI

Agostini P, Cieslik H, Rathinam S, et al. . Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? Thorax 2010; 65: 815–818. doi:10.1136/thx.2009.123083 PubMed DOI

Boffa DJ, Allen MS, Grab JD, et al. . Data from The Society of Thoracic Surgeons General Thoracic Surgery database: the surgical management of primary lung tumors. J Thorac Cardiovasc Surg 2008; 135: 247–254. doi:10.1016/j.jtcvs.2007.07.060 PubMed DOI

Powell HA, Tata LJ, Baldwin DR, et al. . Early mortality after surgical resection for lung cancer: an analysis of the English National Lung cancer audit. Thorax 2013; 68: 826–834. doi:10.1136/thoraxjnl-2012-203123 PubMed DOI

Brat K, Tothova Z, Merta Z, et al. . Resting end-tidal carbon dioxide predicts respiratory complications in patients undergoing thoracic surgical procedures. Ann Thorac Surg 2016; 102: 1725–1730. doi:10.1016/j.athoracsur.2016.05.070 PubMed DOI

Stéphan F, Boucheseiche S, Hollande J, et al. . Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest 2000; 118: 1263–1270. doi:10.1378/chest.118.5.1263 PubMed DOI

Sandblom G, Videhult P, Crona Guterstam Y, et al. . Mortality after a cholecystectomy: a population-based study. HPB (Oxford) 2015; 17: 239–243. doi:10.1111/hpb.12356 PubMed DOI PMC

Humes DJ, Simpson J. Acute appendicitis. BMJ 2006; 333: 530–534. doi:10.1136/bmj.38940.664363.AE PubMed DOI PMC

Brunelli A, Belardinelli R, Pompili C, et al. . Minute ventilation-to-carbon dioxide output (V′E/V′CO2) slope is the strongest predictor of respiratory complications and death after pulmonary resection. Ann Thorac Surg 2012; 93: 1802–1806. doi:10.1016/j.athoracsur.2012.03.022 PubMed DOI

Shafiek H, Valera JL, Togores B, et al. . Risk of postoperative complications in chronic obstructive lung diseases patients considered fit for lung cancer surgery: beyond oxygen consumption. Eur J Cardiothorac Surg 2016; 50: 772–779. doi:10.1093/ejcts/ezw104 PubMed DOI

Brat K, Homolka P, Merta Z, et al. . Prediction of postoperative complications: ventilatory efficiency and rest end-tidal carbon dioxide. Ann Thorac Surg 2022; in press [10.1016/j.athoracsur.2021.11.073]. PubMed DOI

Brat K, Chobola M, Homolka P, et al. . Poor ventilatory efficiency during exercise may predict prolonged air leak after pulmonary lobectomy. Interact Cardiovasc Thorac Surg 2020; 30: 269–272. PubMed

Miller MR, Crapo R, Hankinson J, et al. . General considerations for lung function testing. Eur Respir J 2005; 26: 153–161. doi:10.1183/09031936.05.00034505 PubMed DOI

Torchio R, Guglielmo M, Giardino R, et al. . Exercise ventilatory inefficiency and mortality in patients with chronic obstructive pulmonary disease undergoing surgery for non-small-cell lung cancer. Eur J Cardiothorac Surg 2010; 38: 14–19. doi:10.1016/j.ejcts.2010.01.032 PubMed DOI

Choi H, Mazzone P. Preoperative evaluation of the patient with lung cancer being considered for lung resection. Curr Opin Anaesthesiol 2015; 28: 18–25. doi:10.1097/ACO.0000000000000149 PubMed DOI

Sanchez-Lorente D, Navarro-Ripoll R, Guzman R, et al. . Prehabilitation in thoracic surgery. J Thorac Dis 2018; 10: Suppl. 22, S2593–S2600. doi:10.21037/jtd.2018.08.18 PubMed DOI PMC

Miyazaki T, Callister MEJ, Franks K, et al. . Minute ventilation-to-carbon dioxide slope is associated with postoperative survival after anatomical lung resection. Lung Cancer 2018; 125: 218–222. doi:10.1016/j.lungcan.2018.10.003 PubMed DOI

Woods PR, Olson TP, Frantz RP, et al. . Causes of breathing inefficiency during exercise in heart failure. J Card Fail 2010; 16: 835–842. doi:10.1016/j.cardfail.2010.05.003 PubMed DOI PMC

Lewis DA, Sietsema KE, Casaburi R, et al. . Inaccuracy of noninvasive estimates of VD/VT in clinical exercise testing. Chest 1994; 106: 1476–1480. doi:10.1378/chest.106.5.1476 PubMed DOI

Cundrle I, Johnson BD, Rea RF, et al. . Modulation of ventilatory reflex control by cardiac resynchronization therapy. J Card Fail 2015; 21: 367–373. doi:10.1016/j.cardfail.2014.12.013 PubMed DOI PMC

Cundrle I Jr, Somers VK, Johnson BD, et al. . Exercise end-tidal CO2 predicts central sleep apnea in patients with heart failure. Chest 2015; 147: 1566–1573. doi:10.1378/chest.14-2114 PubMed DOI PMC

Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32: 70–84. doi:10.1097/00005768-200001000-00012 PubMed DOI

Oparka J, Yan TD, Ryan E, et al. . Does video-assisted thoracic surgery provide a safe alternative to conventional techniques in patients with limited pulmonary function who are otherwise suitable for lung resection? Interact Cardiovasc Thorac Surg 2013; 17: 159–162. doi:10.1093/icvts/ivt097 PubMed DOI PMC

Gravier FE, Smondack P, Boujibar F, et al. . Prehabilitation sessions can be provided more frequently in a shortened regimen with similar or better efficacy in people with non-small cell lung cancer: a randomised trial. J Physiother 2022; 68: 43–50. doi:10.1016/j.jphys.2021.12.010 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

New models for prediction of postoperative pulmonary complications in lung resection candidates

. 2024 Jul ; 10 (4) : . [epub] 20240916

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...