Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Role of hypoxia in cellular senescence

H. Gao, E. Nepovimova, Z. Heger, M. Valko, Q. Wu, K. Kuca, V. Adam

. 2023 ; 194 (-) : 106841. [pub] 20230628

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016677

Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016677
003      
CZ-PrNML
005      
20231026105630.0
007      
ta
008      
231013s2023 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.phrs.2023.106841 $2 doi
035    __
$a (PubMed)37385572
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Gao, Haoyu $u College of Life Science, Yangtze University, Jingzhou 434025, China
245    10
$a Role of hypoxia in cellular senescence / $c H. Gao, E. Nepovimova, Z. Heger, M. Valko, Q. Wu, K. Kuca, V. Adam
520    9_
$a Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
650    _2
$a lidé $7 D006801
650    12
$a nádorový supresorový protein p53 $x metabolismus $7 D016159
650    12
$a galaktosa $x farmakologie $7 D005690
650    _2
$a PARP inhibitory $x farmakologie $7 D000067856
650    _2
$a stárnutí buněk $7 D016922
650    _2
$a inhibitor p21 cyklin-dependentní kinasy $x metabolismus $7 D050759
650    _2
$a hypoxie $7 D000860
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nepovimova, Eugenie $u Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
700    1_
$a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
700    1_
$a Valko, Marian $u Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
700    1_
$a Wu, Qinghua $u College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic. Electronic address: wqh212@hotmail.com
700    1_
$a Kuca, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain. Electronic address: kamil.kuca@uhk.cz
700    1_
$a Adam, Vojtech $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic. Electronic address: adam@mendelu.cz
773    0_
$w MED00005744 $t Pharmacological research $x 1096-1186 $g Roč. 194, č. - (2023), s. 106841
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37385572 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105625 $b ABA008
999    __
$a ok $b bmc $g 2000287 $s 1203039
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 194 $c - $d 106841 $e 20230628 $i 1096-1186 $m Pharmacological research $n Pharmacol Res $x MED00005744
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...