Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue

R. Halfar, BAJ. Lawson, RW. Dos Santos, K. Burrage

. 2023 ; 13 (1) : 11828. [pub] 20230722

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016837

This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016837
003      
CZ-PrNML
005      
20231026105518.0
007      
ta
008      
231013s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-023-38256-w $2 doi
035    __
$a (PubMed)37481668
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Halfar, Radek $u IT4Innovations, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic. radek.halfar@vsb.cz
245    10
$a Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue / $c R. Halfar, BAJ. Lawson, RW. Dos Santos, K. Burrage
520    9_
$a This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
650    _2
$a lidé $7 D006801
650    _2
$a nemoci převodního systému srdečního $7 D000075224
650    12
$a srdeční síně $7 D006325
650    12
$a benchmarking $7 D019985
650    _2
$a jizva $7 D002921
650    _2
$a počítačová simulace $7 D003198
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lawson, Brodie A J $u ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia $u Centre for Data Science, Queensland Univeristy of Technology, Brisbane, 4000, Australia
700    1_
$a Dos Santos, Rodrigo Weber $u Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, Brazil
700    1_
$a Burrage, Kevin $u ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia $u Department of Computer Science, University of Oxford, Oxford, UK
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 13, č. 1 (2023), s. 11828
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37481668 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105513 $b ABA008
999    __
$a ok $b bmc $g 2000399 $s 1203199
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 13 $c 1 $d 11828 $e 20230722 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...