-
Je něco špatně v tomto záznamu ?
Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue
R. Halfar, BAJ. Lawson, RW. Dos Santos, K. Burrage
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- benchmarking * MeSH
- jizva MeSH
- lidé MeSH
- nemoci převodního systému srdečního MeSH
- počítačová simulace MeSH
- srdeční síně * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
Centre for Data Science Queensland Univeristy of Technology Brisbane 4000 Australia
Department of Computer Science University of Oxford Oxford UK
IT4Innovations VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016837
- 003
- CZ-PrNML
- 005
- 20231026105518.0
- 007
- ta
- 008
- 231013s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-023-38256-w $2 doi
- 035 __
- $a (PubMed)37481668
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Halfar, Radek $u IT4Innovations, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic. radek.halfar@vsb.cz
- 245 10
- $a Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue / $c R. Halfar, BAJ. Lawson, RW. Dos Santos, K. Burrage
- 520 9_
- $a This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nemoci převodního systému srdečního $7 D000075224
- 650 12
- $a srdeční síně $7 D006325
- 650 12
- $a benchmarking $7 D019985
- 650 _2
- $a jizva $7 D002921
- 650 _2
- $a počítačová simulace $7 D003198
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lawson, Brodie A J $u ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia $u Centre for Data Science, Queensland Univeristy of Technology, Brisbane, 4000, Australia
- 700 1_
- $a Dos Santos, Rodrigo Weber $u Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, Brazil
- 700 1_
- $a Burrage, Kevin $u ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia $u Department of Computer Science, University of Oxford, Oxford, UK
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 13, č. 1 (2023), s. 11828
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37481668 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105513 $b ABA008
- 999 __
- $a ok $b bmc $g 2000399 $s 1203199
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 13 $c 1 $d 11828 $e 20230722 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20231013