Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics

P. Solar, H. Valekova, P. Marcon, J. Mikulka, M. Barak, M. Hendrych, M. Stransky, K. Siruckova, M. Kostial, K. Holikova, J. Brychta, R. Jancalek

. 2023 ; 13 (1) : 11459. [pub] 20230715

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016875

Grantová podpora
LTC20027 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027 Ministerstvo Školství, Mládeže a Tělovýchovy

Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016875
003      
CZ-PrNML
005      
20250507160916.0
007      
ta
008      
231013s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-023-38542-7 $2 doi
035    __
$a (PubMed)37454179
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Solar, Peter $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic
245    10
$a Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics / $c P. Solar, H. Valekova, P. Marcon, J. Mikulka, M. Barak, M. Hendrych, M. Stransky, K. Siruckova, M. Kostial, K. Holikova, J. Brychta, R. Jancalek
520    9_
$a Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.
650    _2
$a lidé $7 D006801
650    _2
$a průřezové studie $7 D003430
650    _2
$a difuzní magnetická rezonance $x metody $7 D038524
650    12
$a glioblastom $x diagnostické zobrazování $x patologie $7 D005909
650    12
$a absces mozku $x patologie $7 D001922
650    _2
$a strojové učení $7 D000069550
650    _2
$a mozek $x diagnostické zobrazování $x patologie $7 D001921
655    _2
$a časopisecké články $7 D016428
700    1_
$a Valekova, Hana $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Marcon, Petr $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
700    1_
$a Mikulka, Jan $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
700    1_
$a Barák, Martin $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $7 xx0319252
700    1_
$a Hendrych, Michal $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $u First Department of Pathology, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Stransky, Matyas $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
700    1_
$a Siruckova, Katerina $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
700    1_
$a Kostial, Martin $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
700    1_
$a Holíková, Klára $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Department of Medical Imaging, St. Anne's University Hospital, Brno, Czech Republic $7 xx0331835
700    1_
$a Brychta, Jindrich $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
700    1_
$a Jancalek, Radim $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. radim.jancalek@fnusa.cz $u Faculty of Medicine, Masaryk University, Brno, Czech Republic. radim.jancalek@fnusa.cz
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 13, č. 1 (2023), s. 11459
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37454179 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20250507160914 $b ABA008
999    __
$a ok $b bmc $g 2000416 $s 1203237
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 13 $c 1 $d 11459 $e 20230715 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...