-
Je něco špatně v tomto záznamu ?
Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
P. Solar, H. Valekova, P. Marcon, J. Mikulka, M. Barak, M. Hendrych, M. Stransky, K. Siruckova, M. Kostial, K. Holikova, J. Brychta, R. Jancalek
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
LTC20027
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC20027
Ministerstvo Školství, Mládeže a Tělovýchovy
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- absces mozku * patologie MeSH
- difuzní magnetická rezonance metody MeSH
- glioblastom * diagnostické zobrazování patologie MeSH
- lidé MeSH
- mozek diagnostické zobrazování patologie MeSH
- průřezové studie MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.
1st Department of Pathology St Anne's University Hospital Brno Czech Republic
Department of Medical Imaging St Anne's University Hospital Brno Czech Republic
Department of Neurosurgery St Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016875
- 003
- CZ-PrNML
- 005
- 20250507160916.0
- 007
- ta
- 008
- 231013s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-023-38542-7 $2 doi
- 035 __
- $a (PubMed)37454179
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Solar, Peter $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 245 10
- $a Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics / $c P. Solar, H. Valekova, P. Marcon, J. Mikulka, M. Barak, M. Hendrych, M. Stransky, K. Siruckova, M. Kostial, K. Holikova, J. Brychta, R. Jancalek
- 520 9_
- $a Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a průřezové studie $7 D003430
- 650 _2
- $a difuzní magnetická rezonance $x metody $7 D038524
- 650 12
- $a glioblastom $x diagnostické zobrazování $x patologie $7 D005909
- 650 12
- $a absces mozku $x patologie $7 D001922
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mozek $x diagnostické zobrazování $x patologie $7 D001921
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Valekova, Hana $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Marcon, Petr $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
- 700 1_
- $a Mikulka, Jan $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
- 700 1_
- $a Barák, Martin $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $7 xx0319252
- 700 1_
- $a Hendrych, Michal $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $u First Department of Pathology, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Stransky, Matyas $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
- 700 1_
- $a Siruckova, Katerina $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
- 700 1_
- $a Kostial, Martin $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka, 12, 616 00, Brno, Czech Republic
- 700 1_
- $a Holíková, Klára $u Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Department of Medical Imaging, St. Anne's University Hospital, Brno, Czech Republic $7 xx0331835
- 700 1_
- $a Brychta, Jindrich $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
- 700 1_
- $a Jancalek, Radim $u Department of Neurosurgery, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. radim.jancalek@fnusa.cz $u Faculty of Medicine, Masaryk University, Brno, Czech Republic. radim.jancalek@fnusa.cz
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 13, č. 1 (2023), s. 11459
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37454179 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20250507160914 $b ABA008
- 999 __
- $a ok $b bmc $g 2000416 $s 1203237
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 13 $c 1 $d 11459 $e 20230715 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LTC20027 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- LZP __
- $a Pubmed-20231013