• Je něco špatně v tomto záznamu ?

How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature

M. Yusefi, K. Shameli, H. Jahangirian, SY. Teow, L. Afsah-Hejri, SNA. Mohamad Sukri, K. Kuča

. 2023 ; 18 (-) : 3535-3575. [pub] 20230630

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc23017038

Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23017038
003      
CZ-PrNML
005      
20231026105340.0
007      
ta
008      
231013s2023 nz f 000 0|eng||
009      
AR
024    7_
$a 10.2147/IJN.S375964 $2 doi
035    __
$a (PubMed)37409027
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Yusefi, Mostafa $u Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia $u Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
245    10
$a How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature / $c M. Yusefi, K. Shameli, H. Jahangirian, SY. Teow, L. Afsah-Hejri, SNA. Mohamad Sukri, K. Kuča
520    9_
$a Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
650    _2
$a lidé $7 D006801
650    12
$a indukovaná hypertermie $x metody $7 D006979
650    _2
$a lékové transportní systémy $x metody $7 D016503
650    12
$a nádory $x farmakoterapie $7 D009369
650    _2
$a magnetismus $7 D008280
650    _2
$a magnetické pole $7 D060526
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Shameli, Kamyar $u Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany $1 https://orcid.org/0000000239554604
700    1_
$a Jahangirian, Hossein $u CaroGen Corporation, Farmington, CT, USA $1 https://orcid.org/0000000170351963
700    1_
$a Teow, Sin-Yeang $u Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People's Republic of China $1 https://orcid.org/0000000238240224
700    1_
$a Afsah-Hejri, Leili $u Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
700    1_
$a Mohamad Sukri, Siti Nur Amalina $u Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
700    1_
$a Kuča, Kamil $u Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic $1 https://orcid.org/0000000196641109 $7 xx0041831
773    0_
$w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 18, č. - (2023), s. 3535-3575
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37409027 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105335 $b ABA008
999    __
$a ok $b bmc $g 2000520 $s 1203400
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 18 $c - $d 3535-3575 $e 20230630 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace