-
Je něco špatně v tomto záznamu ?
BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria
K. Gotvaldová, J. Špačková, J. Novotný, K. Baslarová, P. Ježek, L. Rossmeislová, J. Gojda, K. Smolková
Status neindexováno Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
NV19-01-00101
Agentura Pro Zdravotnický Výzkum České Republiky
NV19-01-00101
Agentura Pro Zdravotnický Výzkum České Republiky
NV19-01-00101
Agentura Pro Zdravotnický Výzkum České Republiky
NLK
BioMedCentral
od 2013-12-01
BioMedCentral Open Access
od 2013
Directory of Open Access Journals
od 2013
Free Medical Journals
od 2013
PubMed Central
od 2013
Europe PubMed Central
od 2013
ProQuest Central
od 2015-01-01
Open Access Digital Library
od 2013-01-01
Open Access Digital Library
od 2013-01-01
Health & Medicine (ProQuest)
od 2015-01-01
Health Management Database (ProQuest)
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2013
Springer Nature OA/Free Journals
od 2013-12-01
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells. METHODS: We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites. RESULTS: Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status. CONCLUSIONS: Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24005540
- 003
- CZ-PrNML
- 005
- 20240729100824.0
- 007
- ta
- 008
- 240405s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s40170-024-00335-5 $2 doi
- 035 __
- $a (PubMed)38532464
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Gotvaldová, Klára $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic $1 https://orcid.org/0000000207744454
- 245 10
- $a BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria / $c K. Gotvaldová, J. Špačková, J. Novotný, K. Baslarová, P. Ježek, L. Rossmeislová, J. Gojda, K. Smolková
- 520 9_
- $a BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells. METHODS: We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites. RESULTS: Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status. CONCLUSIONS: Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Špačková, Jitka $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic $1 https://orcid.org/0009000109305324
- 700 1_
- $a Novotný, Jiří $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic $1 https://orcid.org/0000000160455697
- 700 1_
- $a Baslarová, Kamila $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic $u First Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0009000424422993
- 700 1_
- $a Ježek, Petr $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic $1 https://orcid.org/0000000227209395 $7 xx0030581
- 700 1_
- $a Rossmeislová, Lenka $u Department of Pathophysiology, Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic $u Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic $1 https://orcid.org/0000000276117585 $7 xx0095550
- 700 1_
- $a Gojda, Jan $u Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic $u Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic $1 https://orcid.org/0000000279955947
- 700 1_
- $a Smolková, Katarína $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic. katarina.smolkova@fgu.cas.cz $1 https://orcid.org/0000000247340200 $7 xx0139595
- 773 0_
- $w MED00208612 $t Cancer & metabolism $x 2049-3002 $g Roč. 12, č. 1 (2024), s. 10
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38532464 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240405 $b ABA008
- 991 __
- $a 20240729100823 $b ABA008
- 999 __
- $a ok $b bmc $g 2075949 $s 1215302
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 12 $c 1 $d 10 $e 20240326 $i 2049-3002 $m Cancer & metabolism $n Cancer Metab $x MED00208612
- GRA __
- $a NV19-01-00101 $p Agentura Pro Zdravotnický Výzkum České Republiky
- GRA __
- $a NV19-01-00101 $p Agentura Pro Zdravotnický Výzkum České Republiky
- GRA __
- $a NV19-01-00101 $p Agentura Pro Zdravotnický Výzkum České Republiky
- LZP __
- $a Pubmed-20240405