Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations

M. Haman, M. Školník, M. Lošťák

. 2024 ; 119 (-) : 112325. [pub] 20231212

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006924
E-zdroje Online Plný text

NLK ProQuest Central od 2003-01-01 do Před 2 měsíci
Nursing & Allied Health Database (ProQuest) od 2003-01-01 do Před 2 měsíci
Health & Medicine (ProQuest) od 2003-01-01 do Před 2 měsíci
Health Management Database (ProQuest) od 2003-01-01 do Před 2 měsíci
Public Health Database (ProQuest) od 2003-01-01 do Před 2 měsíci

We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals..

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006924
003      
CZ-PrNML
005      
20240423155600.0
007      
ta
008      
240412e20231212xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.nut.2023.112325 $2 doi
035    __
$a (PubMed)38194819
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Haman, Michael $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic. Electronic address: haman@pef.czu.cz
245    10
$a AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations / $c M. Haman, M. Školník, M. Lošťák
520    9_
$a We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals.<END ABSTRACT>.
650    _2
$a lidé $7 D006801
650    12
$a umělá inteligence $7 D001185
650    12
$a nutriční poradci $7 D064686
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a jídla $7 D062407
650    _2
$a živiny $7 D000078622
651    _2
$a Spojené státy americké $7 D014481
655    _2
$a časopisecké články $7 D016428
700    1_
$a Školník, Milan $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic
700    1_
$a Lošťák, Michal $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic
773    0_
$w MED00003566 $t Nutrition $x 1873-1244 $g Roč. 119 (20231212), s. 112325
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38194819 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155556 $b ABA008
999    __
$a ok $b bmc $g 2081102 $s 1216691
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 119 $c - $d 112325 $e 20231212 $i 1873-1244 $m Nutrition $n Nutrition $x MED00003566
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...