Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots

P. Sengupta, S. Dutta, R. Jegasothy, P. Slama, CL. Cho, S. Roychoudhury

. 2024 ; 22 (1) : 22. [pub] 20240213

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007147

The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007147
003      
CZ-PrNML
005      
20250819151216.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12958-024-01193-y $2 doi
035    __
$a (PubMed)38350931
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sengupta, Pallav $u Department of Biomedical Sciences, College of Medicine, Gulf Medical University (GMU), Ajman, UAE. pallav_cu@yahoo.com $1 https://orcid.org/0000000219285048
245    10
$a 'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots / $c P. Sengupta, S. Dutta, R. Jegasothy, P. Slama, CL. Cho, S. Roychoudhury
520    9_
$a The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé $7 D006801
650    12
$a intracytoplazmatické injekce spermie $7 D020554
650    _2
$a umělá inteligence $7 D001185
650    _2
$a sperma $7 D012661
650    12
$a mužská infertilita $x diagnóza $x genetika $x terapie $7 D007248
650    _2
$a asistovaná reprodukce $7 D027724
655    _2
$a dopisy $7 D016422
700    1_
$a Dutta, Sulagna $u Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE $1 https://orcid.org/0000000278935282
700    1_
$a Jegasothy, Ravindran $u Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia $1 https://orcid.org/0000000164491900
700    1_
$a Slama, Petr $u Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic $1 https://orcid.org/000000030570259X $7 stk2007383506
700    1_
$a Cho, Chak-Lam $u S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China $1 https://orcid.org/0000000325206833
700    1_
$a Roychoudhury, Shubhadeep $u Department of Life Science and Bioinformatics, Assam University, Silchar, India. shubhadeep1@gmail.com $1 https://orcid.org/0000000341741852 $7 xx0334841
773    0_
$w MED00008251 $t Reproductive biology and endocrinology $x 1477-7827 $g Roč. 22, č. 1 (2024), s. 22
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38350931 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20250819151159 $b ABA008
999    __
$a ok $b bmc $g 2081250 $s 1216914
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 22 $c 1 $d 22 $e 20240213 $i 1477-7827 $m Reproductive biology and endocrinology $n Reprod Biol Endocrinol $x MED00008251
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...