• Je něco špatně v tomto záznamu ?

SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein-ligand binding affinity predictions in minutes

A. Pecina, J. Fanfrlík, M. Lepšík, J. Řezáč

. 2024 ; 15 (1) : 1127. [pub] 20240206

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007196

Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007196
003      
CZ-PrNML
005      
20240423155802.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-024-45431-8 $2 doi
035    __
$a (PubMed)38321025
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Pecina, Adam $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000338907831
245    10
$a SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein-ligand binding affinity predictions in minutes / $c A. Pecina, J. Fanfrlík, M. Lepšík, J. Řezáč
520    9_
$a Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.
650    _2
$a ligandy $7 D008024
650    12
$a proteiny $x metabolismus $7 D011506
650    _2
$a vazba proteinů $7 D011485
650    12
$a racionální návrh léčiv $7 D015195
650    _2
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
700    1_
$a Fanfrlík, Jindřich $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000212571201
700    1_
$a Lepšík, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Řezáč, Jan $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic. rezac@uochb.cas.cz $1 https://orcid.org/0000000168497314 $7 xx0201209
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 15, č. 1 (2024), s. 1127
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38321025 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155758 $b ABA008
999    __
$a ok $b bmc $g 2081279 $s 1216963
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 15 $c 1 $d 1127 $e 20240206 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...