-
Je něco špatně v tomto záznamu ?
SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein-ligand binding affinity predictions in minutes
A. Pecina, J. Fanfrlík, M. Lepšík, J. Řezáč
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- ligandy MeSH
- proteiny * metabolismus MeSH
- racionální návrh léčiv * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007196
- 003
- CZ-PrNML
- 005
- 20240423155802.0
- 007
- ta
- 008
- 240412s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-024-45431-8 $2 doi
- 035 __
- $a (PubMed)38321025
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Pecina, Adam $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000338907831
- 245 10
- $a SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein-ligand binding affinity predictions in minutes / $c A. Pecina, J. Fanfrlík, M. Lepšík, J. Řezáč
- 520 9_
- $a Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.
- 650 _2
- $a ligandy $7 D008024
- 650 12
- $a proteiny $x metabolismus $7 D011506
- 650 _2
- $a vazba proteinů $7 D011485
- 650 12
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fanfrlík, Jindřich $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000212571201
- 700 1_
- $a Lepšík, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Řezáč, Jan $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic. rezac@uochb.cas.cz $1 https://orcid.org/0000000168497314 $7 xx0201209
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 15, č. 1 (2024), s. 1127
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38321025 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155758 $b ABA008
- 999 __
- $a ok $b bmc $g 2081279 $s 1216963
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 15 $c 1 $d 1127 $e 20240206 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20240412