-
Je něco špatně v tomto záznamu ?
Metrics reloaded: recommendations for image analysis validation
L. Maier-Hein, A. Reinke, P. Godau, MD. Tizabi, F. Buettner, E. Christodoulou, B. Glocker, F. Isensee, J. Kleesiek, M. Kozubek, M. Reyes, MA. Riegler, M. Wiesenfarth, AE. Kavur, CH. Sudre, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, T....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P41 GM135019
NIGMS NIH HHS - United States
NLK
ProQuest Central
od 2004-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2004-10-01 do Před 1 rokem
- MeSH
- algoritmy * MeSH
- počítačové zpracování obrazu * MeSH
- sémantika MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
ARTORG Center for Biomedical Engineering Research University of Bern Bern Switzerland
BCN Medtech Universitat Pompeu Fabra Barcelona Spain
Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany
Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA
Center for Scalable Data Analytics and Artificial Intelligence Leipzig University Leipzig Germany
Center for Systems Biology Dresden Germany
Centre for Intelligent Machines and MILA McGill University Montréal Quebec Canada
Centre for Medical Image Computing University College London London UK
Centre for Statistics in Medicine University of Oxford Nuffield Orthopaedic Centre Oxford UK
Department AIBE Friedrich Alexander Universität Erlangen Nürnberg Germany
Department of Biomedical Data Sciences Leiden University Medical Center Leiden the Netherlands
Department of Biomedical Informatics Stony Brook University Health Science Center Stony Brook NY USA
Department of Computer Science IT University of Copenhagen Copenhagen Denmark
Department of Computer Science UiT The Arctic University of Norway Tromsø Norway
Department of Computer Science University of Toronto Toronto Ontario Canada
Department of Computing Faculty of Engineering Imperial College London London UK
Department of Computing Imperial College London South Kensington Campus London UK
Department of Development and Regeneration and EPI centre KU Leuven Leuven Belgium
Department of Digital Medical Technologies Holon Institute of Technology Holon Israel
Department of Informatics Goethe University Frankfurt Frankfurt am Main Germany
Department of Medical Biophysics University of Toronto Toronto Ontario Canada
Department of Medicine Goethe University Frankfurt Frankfurt am Main Germany
Department of Pathology Radboud University Medical Center Nijmegen the Netherlands
Department of Quantitative Biomedicine University of Zurich Zurich Switzerland
Department of Radiation Oncology University Hospital Bern University of Bern Bern Switzerland
Department of Surgery Perelman School of Medicine Philadelphia PA USA
Department of Surgery University Health Network Philadelphia PA USA
Digital Engineering Faculty University of Potsdam Potsdam Germany
Electrical Engineering Vanderbilt University Nashville TN USA
European Federation for Medical Informatics Le Mont sur Lausanne Switzerland
Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany
Faculty of Medicine Heidelberg University Hospital Heidelberg Germany
Frankfurt Cancer Insititute Frankfurt am Main Germany
Fraunhofer MEVIS Bremen Germany
German Cancer Research Center Heidelberg Division of Biostatistics Heidelberg Germany
German Cancer Research Center Heidelberg Division of Intelligent Medical Systems Heidelberg Germany
German Cancer Research Center Heidelberg Division of Medical Image Computing Heidelberg Germany
German Cancer Research Center Heidelberg Heidelberg Germany
German Cancer Research Center Heidelberg HI Applied Computer Vision Lab Heidelberg Germany
German Cancer Research Center Heidelberg HI Helmholtz Imaging Heidelberg Germany
German Cancer Research Center Heidelberg Interactive Machine Learning Group Heidelberg Germany
Google 1600 Amphitheatre Pkwy Mountain View CA USA
Google Health DeepMind London UK
Google Health Google Palo Alto CA USA
Helmholtz AI Oberschleißheim Germany
IHU Strasbourg Strasbourg France
Imaging Platform Broad Institute of MIT and Harvard Cambridge MA USA
Informatics Institute Faculty of Science University of Amsterdam Amsterdam the Netherlands
Information Systems Institute University of Applied Sciences Western Switzerland Sierre Switzerland
Institute for AI in Medicine University Medicine Essen Essen Germany
Institute for Computational Biomedicine Heidelberg University Heidelberg Germany
Institute of Information Systems Engineering TU Wien Vienna Austria
Instituto de Cálculo CONICET Universidad de Buenos Aires Buenos Aires Argentina
Laboratoire Traitement du Signal et de l'Image UMR_S 1099 Université de Rennes 1 Rennes France
Medical Faculty Heidelberg University Heidelberg Germany
Medical Faculty University of Geneva Geneva Switzerland
National Institutes of Health Clinical Center Bethesda MD USA
Neurocenter Oulu Oulu University Hospital Oulu Finland
Parietal project team INRIA Saclay Île de France Palaiseau France
Physical Sciences Sunnybrook Research Institute Toronto Ontario Canada
Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada
Radboud Institute for Health Sciences Radboud University Medical Center Nijmegen the Netherlands
Research Unit of Health Sciences and Technology Faculty of Medicine University of Oulu Oulu Finland
School of Biomedical Engineering and Imaging Science King's College London London UK
School of Engineering The University of Edinburgh Edinburgh Scotland
Simula Metropolitan Center for Digital Engineering Oslo Norway
Technische Universität Dresden DFG Cluster of Excellence 'Physics of Life' Dresden Germany
Tissue Image Analytics Laboratory Department of Computer Science University of Warwick Coventry UK
Vector Institute for Artificial Intelligence Toronto Ontario Canada
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007245
- 003
- CZ-PrNML
- 005
- 20240423155829.0
- 007
- ta
- 008
- 240412s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41592-023-02151-z $2 doi
- 035 __
- $a (PubMed)38347141
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Maier-Hein, Lena $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany. l.maier-hein@dkfz-heidelberg.de $u German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany. l.maier-hein@dkfz-heidelberg.de $u Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. l.maier-hein@dkfz-heidelberg.de $u Medical Faculty, Heidelberg University, Heidelberg, Germany. l.maier-hein@dkfz-heidelberg.de $u National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany. l.maier-hein@dkfz-heidelberg.de $1 https://orcid.org/0000000349109368
- 245 10
- $a Metrics reloaded: recommendations for image analysis validation / $c L. Maier-Hein, A. Reinke, P. Godau, MD. Tizabi, F. Buettner, E. Christodoulou, B. Glocker, F. Isensee, J. Kleesiek, M. Kozubek, M. Reyes, MA. Riegler, M. Wiesenfarth, AE. Kavur, CH. Sudre, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, T. Rädsch, L. Acion, M. Antonelli, T. Arbel, S. Bakas, A. Benis, MB. Blaschko, MJ. Cardoso, V. Cheplygina, BA. Cimini, GS. Collins, K. Farahani, L. Ferrer, A. Galdran, B. van Ginneken, R. Haase, DA. Hashimoto, MM. Hoffman, M. Huisman, P. Jannin, CE. Kahn, D. Kainmueller, B. Kainz, A. Karargyris, A. Karthikesalingam, F. Kofler, A. Kopp-Schneider, A. Kreshuk, T. Kurc, BA. Landman, G. Litjens, A. Madani, K. Maier-Hein, AL. Martel, P. Mattson, E. Meijering, B. Menze, KGM. Moons, H. Müller, B. Nichyporuk, F. Nickel, J. Petersen, N. Rajpoot, N. Rieke, J. Saez-Rodriguez, CI. Sánchez, S. Shetty, M. van Smeden, RM. Summers, AA. Taha, A. Tiulpin, SA. Tsaftaris, B. Van Calster, G. Varoquaux, PF. Jäger
- 520 9_
- $a Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
- 650 12
- $a počítačové zpracování obrazu $7 D007091
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a sémantika $7 D012660
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Reinke, Annika $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany. a.reinke@dkfz-heidelberg.de $u German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany. a.reinke@dkfz-heidelberg.de $u Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. a.reinke@dkfz-heidelberg.de $1 https://orcid.org/0000000343631876
- 700 1_
- $a Godau, Patrick $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $u Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany $u National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany $1 https://orcid.org/0000000203657265
- 700 1_
- $a Tizabi, Minu D $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $u National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- 700 1_
- $a Buettner, Florian $u German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and UCT Frankfurt-Marburg, Frankfurt am Main, Germany $u German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany $u Department of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany $u Department of Informatics, Goethe University Frankfurt, Frankfurt am Main, Germany $u Frankfurt Cancer Insititute, Frankfurt am Main, Germany
- 700 1_
- $a Christodoulou, Evangelia $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- 700 1_
- $a Glocker, Ben $u Department of Computing, Imperial College London, South Kensington Campus, London, UK $1 https://orcid.org/0000000248979356
- 700 1_
- $a Isensee, Fabian $u German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany $u German Cancer Research Center (DKFZ) Heidelberg, HI Applied Computer Vision Lab, Heidelberg, Germany
- 700 1_
- $a Kleesiek, Jens $u Institute for AI in Medicine, University Medicine Essen, Essen, Germany
- 700 1_
- $a Kozubek, Michal $u Centre for Biomedical Image Analysis and Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/000000017902589X $7 ola2003204934
- 700 1_
- $a Reyes, Mauricio $u ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland $u Department of Radiation Oncology, University Hospital Bern, University of Bern, Bern, Switzerland
- 700 1_
- $a Riegler, Michael A $u Simula Metropolitan Center for Digital Engineering, Oslo, Norway $u Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway $1 https://orcid.org/0000000231532064
- 700 1_
- $a Wiesenfarth, Manuel $u German Cancer Research Center (DKFZ) Heidelberg, Division of Biostatistics, Heidelberg, Germany
- 700 1_
- $a Kavur, A Emre $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $u German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany $u German Cancer Research Center (DKFZ) Heidelberg, HI Applied Computer Vision Lab, Heidelberg, Germany
- 700 1_
- $a Sudre, Carole H $u MRC Unit for Lifelong Health and Ageing at UCL and Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK $u School of Biomedical Engineering and Imaging Science, King's College London, London, UK
- 700 1_
- $a Baumgartner, Michael $u German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- 700 1_
- $a Eisenmann, Matthias $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $1 https://orcid.org/0000000207138761
- 700 1_
- $a Heckmann-Nötzel, Doreen $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $u National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- 700 1_
- $a Rädsch, Tim $u German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany $u German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany $1 https://orcid.org/0000000335180315
- 700 1_
- $a Acion, Laura $u Instituto de Cálculo, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina $1 https://orcid.org/0000000152136012
- 700 1_
- $a Antonelli, Michela $u School of Biomedical Engineering and Imaging Science, King's College London, London, UK $u Centre for Medical Image Computing, University College London, London, UK $1 https://orcid.org/0000000230054523
- 700 1_
- $a Arbel, Tal $u Centre for Intelligent Machines and MILA (Québec Artificial Intelligence Institute), McGill University, Montréal, Quebec, Canada $1 https://orcid.org/0000000188703007
- 700 1_
- $a Bakas, Spyridon $u Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, IU Health Information and Translational Sciences Building, Indianapolis, IN, USA $u Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA $1 https://orcid.org/0000000187346482
- 700 1_
- $a Benis, Arriel $u Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel $u European Federation for Medical Informatics, Le Mont-sur-Lausanne, Switzerland $1 https://orcid.org/0000000291258300
- 700 1_
- $a Blaschko, Matthew B $u Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- 700 1_
- $a Cardoso, M Jorge $u School of Biomedical Engineering and Imaging Science, King's College London, London, UK $1 https://orcid.org/0000000312842558
- 700 1_
- $a Cheplygina, Veronika $u Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark $1 https://orcid.org/0000000301769324
- 700 1_
- $a Cimini, Beth A $u Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA $1 https://orcid.org/0000000196409318
- 700 1_
- $a Collins, Gary S $u Centre for Statistics in Medicine, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK $1 https://orcid.org/0000000227722316
- 700 1_
- $a Farahani, Keyvan $u Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
- 700 1_
- $a Ferrer, Luciana $u Instituto de Investigación en Ciencias de la Computación (ICC), CONICET-UBA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- 700 1_
- $a Galdran, Adrian $u BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain $u Australian Institute for Machine Learning AIML, University of Adelaide, Adelaide, South Australia, Australia
- 700 1_
- $a van Ginneken, Bram $u Fraunhofer MEVIS, Bremen, Germany $u Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- 700 1_
- $a Haase, Robert $u Technische Universität (TU) Dresden, DFG Cluster of Excellence 'Physics of Life', Dresden, Germany $u Center for Systems Biology, Dresden, Germany $u Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany $1 https://orcid.org/0000000159492327
- 700 1_
- $a Hashimoto, Daniel A $u Department of Surgery, Perelman School of Medicine, Philadelphia, PA, USA $u General Robotics Automation Sensing and Perception Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA $1 https://orcid.org/0000000347253104
- 700 1_
- $a Hoffman, Michael M $u Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada $u Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada $u Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada $u Department of Computer Science, University of Toronto, Toronto, Ontario, Canada $1 https://orcid.org/0000000245171562
- 700 1_
- $a Huisman, Merel $u Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- 700 1_
- $a Jannin, Pierre $u Laboratoire Traitement du Signal et de l'Image - UMR_S 1099, Université de Rennes 1, Rennes, France $u INSERM, Paris, France $1 https://orcid.org/000000027415071X
- 700 1_
- $a Kahn, Charles E $u Department of Radiology and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA $1 https://orcid.org/0000000266547434
- 700 1_
- $a Kainmueller, Dagmar $u Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Biomedical Image Analysis and HI Helmholtz Imaging, Berlin, Germany $u Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
- 700 1_
- $a Kainz, Bernhard $u Department of Computing, Faculty of Engineering, Imperial College London, London, UK $u Department AIBE, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany
- 700 1_
- $a Karargyris, Alexandros $u IHU Strasbourg, Strasbourg, France $1 https://orcid.org/0000000219303410
- 700 1_
- $a Karthikesalingam, Alan $u Google Health DeepMind, London, UK
- 700 1_
- $a Kofler, Florian $u Helmholtz AI, Oberschleißheim, Germany
- 700 1_
- $a Kopp-Schneider, Annette $u German Cancer Research Center (DKFZ) Heidelberg, Division of Biostatistics, Heidelberg, Germany $1 https://orcid.org/0000000218100267
- 700 1_
- $a Kreshuk, Anna $u Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany $1 https://orcid.org/0000000313346388
- 700 1_
- $a Kurc, Tahsin $u Department of Biomedical Informatics, Stony Brook University, Health Science Center, Stony Brook, NY, USA
- 700 1_
- $a Landman, Bennett A $u Electrical Engineering, Vanderbilt University, Nashville, TN, USA $1 https://orcid.org/0000000157332127
- 700 1_
- $a Litjens, Geert $u Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands $1 https://orcid.org/0000000315541291
- 700 1_
- $a Madani, Amin $u Department of Surgery, University Health Network, Philadelphia, PA, USA
- 700 1_
- $a Maier-Hein, Klaus $u German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany $u Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- 700 1_
- $a Martel, Anne L $u Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada $u Department of Computer Science, University of Toronto, Toronto, Ontario, Canada $u Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada $1 https://orcid.org/0000000313755501
- 700 1_
- $a Mattson, Peter $u Google, 1600 Amphitheatre Pkwy, Mountain View, CA, USA $1 https://orcid.org/000000025984238X
- 700 1_
- $a Meijering, Erik $u School of Computer Science and Engineering, University of New South Wales, UNSW Sydney, Kensington, New South Wales, Australia $1 https://orcid.org/0000000180158358
- 700 1_
- $a Menze, Bjoern $u Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland $1 https://orcid.org/0000000341365690
- 700 1_
- $a Moons, Karel G M $u Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
- 700 1_
- $a Müller, Henning $u Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland $u Medical Faculty, University of Geneva, Geneva, Switzerland $1 https://orcid.org/0000000168009878
- 700 1_
- $a Nichyporuk, Brennan $u MILA (Québec Artificial Intelligence Institute), Montréal, Quebec, Canada $1 https://orcid.org/0009000680876089
- 700 1_
- $a Nickel, Felix $u Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- 700 1_
- $a Petersen, Jens $u German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- 700 1_
- $a Rajpoot, Nasir $u Tissue Image Analytics Laboratory, Department of Computer Science, University of Warwick, Coventry, UK $1 https://orcid.org/0000000167601271
- 700 1_
- $a Rieke, Nicola $u NVIDIA, München, Germany $1 https://orcid.org/0000000302419334
- 700 1_
- $a Saez-Rodriguez, Julio $u Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany $u Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany $1 https://orcid.org/0000000285528976
- 700 1_
- $a Sánchez, Clara I $u Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- 700 1_
- $a Shetty, Shravya $u Google Health, Google, Palo Alto, CA, USA
- 700 1_
- $a van Smeden, Maarten $u Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
- 700 1_
- $a Summers, Ronald M $u National Institutes of Health Clinical Center, Bethesda, MD, USA $1 https://orcid.org/0000000180817376
- 700 1_
- $a Taha, Abdel A $u Institute of Information Systems Engineering, TU Wien, Vienna, Austria $1 https://orcid.org/0000000276049041
- 700 1_
- $a Tiulpin, Aleksei $u Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland $u Neurocenter Oulu, Oulu University Hospital, Oulu, Finland $1 https://orcid.org/0000000278524141
- 700 1_
- $a Tsaftaris, Sotirios A $u School of Engineering, The University of Edinburgh, Edinburgh, Scotland
- 700 1_
- $a Van Calster, Ben $u Department of Development and Regeneration and EPI-centre, KU Leuven, Leuven, Belgium $u Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- 700 1_
- $a Varoquaux, Gaël $u Parietal project team, INRIA Saclay-Île de France, Palaiseau, France $1 https://orcid.org/0000000310765122
- 700 1_
- $a Jäger, Paul F $u German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany. p.jaeger@dkfz-heidelberg.de $u German Cancer Research Center (DKFZ) Heidelberg, Interactive Machine Learning Group, Heidelberg, Germany. p.jaeger@dkfz-heidelberg.de $1 https://orcid.org/0000000262432568
- 773 0_
- $w MED00159605 $t Nature methods $x 1548-7105 $g Roč. 21, č. 2 (2024), s. 195-212
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38347141 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155825 $b ABA008
- 999 __
- $a ok $b bmc $g 2081312 $s 1217012
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 21 $c 2 $d 195-212 $e 20240212 $i 1548-7105 $m Nature methods $n Nat Methods $x MED00159605
- GRA __
- $a P41 GM135019 $p NIGMS NIH HHS $2 United States
- LZP __
- $a Pubmed-20240412