-
Je něco špatně v tomto záznamu ?
Prognostic value of single-subject grey matter networks in early multiple sclerosis
V. Fleischer, G. Gonzalez-Escamilla, D. Pareto, A. Rovira, J. Sastre-Garriga, P. Sowa, EA. Høgestøl, HF. Harbo, B. Bellenberg, C. Lukas, S. Ruggieri, C. Gasperini, T. Uher, M. Vaneckova, S. Bittner, AE. Othman, S. Collorone, AT. Toosy, SG. Meuth,...
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem
Grantová podpora
Deutsche Forschungsgemeinschaft
National MS Society
Novartis Pharma GmbH
the Research Council
Instituto de Salud Carlos III
institutional support of the hospital research
Roche
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
37642541
DOI
10.1093/brain/awad288
Knihovny.cz E-zdroje
- MeSH
- atrofie patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování patologie MeSH
- prognóza MeSH
- progrese nemoci MeSH
- relabující-remitující roztroušená skleróza * diagnostické zobrazování patologie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.
Department of Neurology Medical Faculty Heinrich Heine University 40225 Düsseldorf Germany
Department of Neurology Oslo University Hospital 0424 Oslo Norway
Department of Neurosciences San Camillo Forlanini Hospital 00152 Rome Italy
Department of Neurosciences Sapienza University of Rome 00185 Rome Italy
Department of Radiology and Nuclear Medicine Amsterdam UMC 1100 DD Amsterdam Netherlands
Division of Radiology and Nuclear Medicine Oslo University Hospital 0424 Oslo Norway
Institute of Clinical Medicine University of Oslo NO 0316 Oslo Norway
Institute of Neuroradiology St Josef Hospital Ruhr University Bochum 44791 Bochum Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007654
- 003
- CZ-PrNML
- 005
- 20240423160146.0
- 007
- ta
- 008
- 240412s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/brain/awad288 $2 doi
- 035 __
- $a (PubMed)37642541
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Fleischer, Vinzenz $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- 245 10
- $a Prognostic value of single-subject grey matter networks in early multiple sclerosis / $c V. Fleischer, G. Gonzalez-Escamilla, D. Pareto, A. Rovira, J. Sastre-Garriga, P. Sowa, EA. Høgestøl, HF. Harbo, B. Bellenberg, C. Lukas, S. Ruggieri, C. Gasperini, T. Uher, M. Vaneckova, S. Bittner, AE. Othman, S. Collorone, AT. Toosy, SG. Meuth, F. Zipp, F. Barkhof, O. Ciccarelli, S. Groppa
- 520 9_
- $a The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mladý dospělý $7 D055815
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a šedá hmota $x diagnostické zobrazování $x patologie $7 D066128
- 650 12
- $a roztroušená skleróza $x diagnostické zobrazování $x patologie $7 D009103
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a mozek $x diagnostické zobrazování $x patologie $7 D001921
- 650 12
- $a relabující-remitující roztroušená skleróza $x diagnostické zobrazování $x patologie $7 D020529
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a atrofie $x patologie $7 D001284
- 650 _2
- $a progrese nemoci $7 D018450
- 655 _2
- $a multicentrická studie $7 D016448
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gonzalez-Escamilla, Gabriel $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- 700 1_
- $a Pareto, Deborah $u Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- 700 1_
- $a Rovira, Alex $u Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain $1 https://orcid.org/0000000221326750
- 700 1_
- $a Sastre-Garriga, Jaume $u Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain $1 https://orcid.org/0000000215892254
- 700 1_
- $a Sowa, Piotr $u Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
- 700 1_
- $a Høgestøl, Einar A $u Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway $u Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway $1 https://orcid.org/0000000184462111
- 700 1_
- $a Harbo, Hanne F $u Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway $u Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- 700 1_
- $a Bellenberg, Barbara $u Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- 700 1_
- $a Lukas, Carsten $u Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- 700 1_
- $a Ruggieri, Serena $u Department of Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- 700 1_
- $a Gasperini, Claudio $u Department of Neurosciences, San Camillo-Forlanini Hospital, 00152 Rome, Italy
- 700 1_
- $a Uher, Tomas $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic $1 https://orcid.org/0000000331609022 $7 xx0189534
- 700 1_
- $a Vaneckova, Manuela $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic $1 https://orcid.org/0000000287847997 $7 mzk2007377403
- 700 1_
- $a Bittner, Stefan $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany $1 https://orcid.org/0000000321793655
- 700 1_
- $a Othman, Ahmed E $u Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- 700 1_
- $a Collorone, Sara $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $1 https://orcid.org/0000000315068983
- 700 1_
- $a Toosy, Ahmed T $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $1 https://orcid.org/0000000244413750
- 700 1_
- $a Meuth, Sven G $u Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- 700 1_
- $a Zipp, Frauke $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany $1 https://orcid.org/0000000212311928
- 700 1_
- $a Barkhof, Frederik $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, 1100 DD Amsterdam, Netherlands
- 700 1_
- $a Ciccarelli, Olga $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
- 700 1_
- $a Groppa, Sergiu $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- 773 0_
- $w MED00009356 $t Brain $x 1460-2156 $g Roč. 147, č. 1 (2024), s. 135-146
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37642541 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423160143 $b ABA008
- 999 __
- $a ok $b bmc $g 2081565 $s 1217421
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 147 $c 1 $d 135-146 $e 20240104 $i 1460-2156 $m Brain $n Brain $x MED00009356
- GRA __
- $p Deutsche Forschungsgemeinschaft
- GRA __
- $p National MS Society
- GRA __
- $p Novartis Pharma GmbH
- GRA __
- $p the Research Council
- GRA __
- $p Instituto de Salud Carlos III
- GRA __
- $p institutional support of the hospital research
- GRA __
- $p Roche
- LZP __
- $a Pubmed-20240412