Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Prognostic value of single-subject grey matter networks in early multiple sclerosis

V. Fleischer, G. Gonzalez-Escamilla, D. Pareto, A. Rovira, J. Sastre-Garriga, P. Sowa, EA. Høgestøl, HF. Harbo, B. Bellenberg, C. Lukas, S. Ruggieri, C. Gasperini, T. Uher, M. Vaneckova, S. Bittner, AE. Othman, S. Collorone, AT. Toosy, SG. Meuth,...

. 2024 ; 147 (1) : 135-146. [pub] 20240104

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007654

Grantová podpora
Deutsche Forschungsgemeinschaft
National MS Society
Novartis Pharma GmbH
the Research Council
Instituto de Salud Carlos III
institutional support of the hospital research
Roche

The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.

Department of Neuroinflammation Queen Square MS Centre UCL Queen Square Institute of Neurology Faculty of Brain Science University College of London WC1E 6BT London UK

Department of Neurology and Center of Clinical Neuroscience 1st Faculty of Medicine Charles University and General University Hospital 121 08 Prague Czech Republic

Department of Neurology Focus Program Translational Neuroscience University Medical Center of the Johannes Gutenberg University Mainz 55131 Mainz Germany

Department of Neurology Medical Faculty Heinrich Heine University 40225 Düsseldorf Germany

Department of Neurology Neuroimmunology Multiple Sclerosis Centre of Catalonia Hospital Universitari Vall d'Hebron 08035 Barcelona Spain

Department of Neurology Oslo University Hospital 0424 Oslo Norway

Department of Neuroradiology University Medical Center of the Johannes Gutenberg University Mainz 55131 Mainz Germany

Department of Neurosciences San Camillo Forlanini Hospital 00152 Rome Italy

Department of Neurosciences Sapienza University of Rome 00185 Rome Italy

Department of Radiology 1st Faculty of Medicine Charles University and General University Hospital 121 08 Prague Czech Republic

Department of Radiology and Nuclear Medicine Amsterdam UMC 1100 DD Amsterdam Netherlands

Division of Radiology and Nuclear Medicine Oslo University Hospital 0424 Oslo Norway

Institute of Clinical Medicine University of Oslo NO 0316 Oslo Norway

Institute of Neuroradiology St Josef Hospital Ruhr University Bochum 44791 Bochum Germany

Section of Neuroradiology Department of Radiology Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona 08035 Barcelona Spain

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007654
003      
CZ-PrNML
005      
20240423160146.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/brain/awad288 $2 doi
035    __
$a (PubMed)37642541
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Fleischer, Vinzenz $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
245    10
$a Prognostic value of single-subject grey matter networks in early multiple sclerosis / $c V. Fleischer, G. Gonzalez-Escamilla, D. Pareto, A. Rovira, J. Sastre-Garriga, P. Sowa, EA. Høgestøl, HF. Harbo, B. Bellenberg, C. Lukas, S. Ruggieri, C. Gasperini, T. Uher, M. Vaneckova, S. Bittner, AE. Othman, S. Collorone, AT. Toosy, SG. Meuth, F. Zipp, F. Barkhof, O. Ciccarelli, S. Groppa
520    9_
$a The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.
650    _2
$a lidé $7 D006801
650    _2
$a dospělí $7 D000328
650    _2
$a mladý dospělý $7 D055815
650    _2
$a lidé středního věku $7 D008875
650    _2
$a šedá hmota $x diagnostické zobrazování $x patologie $7 D066128
650    12
$a roztroušená skleróza $x diagnostické zobrazování $x patologie $7 D009103
650    _2
$a prognóza $7 D011379
650    _2
$a mozek $x diagnostické zobrazování $x patologie $7 D001921
650    12
$a relabující-remitující roztroušená skleróza $x diagnostické zobrazování $x patologie $7 D020529
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a atrofie $x patologie $7 D001284
650    _2
$a progrese nemoci $7 D018450
655    _2
$a multicentrická studie $7 D016448
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gonzalez-Escamilla, Gabriel $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
700    1_
$a Pareto, Deborah $u Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
700    1_
$a Rovira, Alex $u Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain $1 https://orcid.org/0000000221326750
700    1_
$a Sastre-Garriga, Jaume $u Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain $1 https://orcid.org/0000000215892254
700    1_
$a Sowa, Piotr $u Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
700    1_
$a Høgestøl, Einar A $u Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway $u Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway $1 https://orcid.org/0000000184462111
700    1_
$a Harbo, Hanne F $u Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway $u Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
700    1_
$a Bellenberg, Barbara $u Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
700    1_
$a Lukas, Carsten $u Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
700    1_
$a Ruggieri, Serena $u Department of Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
700    1_
$a Gasperini, Claudio $u Department of Neurosciences, San Camillo-Forlanini Hospital, 00152 Rome, Italy
700    1_
$a Uher, Tomas $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic $1 https://orcid.org/0000000331609022 $7 xx0189534
700    1_
$a Vaneckova, Manuela $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic $1 https://orcid.org/0000000287847997 $7 mzk2007377403
700    1_
$a Bittner, Stefan $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany $1 https://orcid.org/0000000321793655
700    1_
$a Othman, Ahmed E $u Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
700    1_
$a Collorone, Sara $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $1 https://orcid.org/0000000315068983
700    1_
$a Toosy, Ahmed T $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $1 https://orcid.org/0000000244413750
700    1_
$a Meuth, Sven G $u Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
700    1_
$a Zipp, Frauke $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany $1 https://orcid.org/0000000212311928
700    1_
$a Barkhof, Frederik $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, 1100 DD Amsterdam, Netherlands
700    1_
$a Ciccarelli, Olga $u Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
700    1_
$a Groppa, Sergiu $u Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
773    0_
$w MED00009356 $t Brain $x 1460-2156 $g Roč. 147, č. 1 (2024), s. 135-146
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37642541 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423160143 $b ABA008
999    __
$a ok $b bmc $g 2081565 $s 1217421
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 147 $c 1 $d 135-146 $e 20240104 $i 1460-2156 $m Brain $n Brain $x MED00009356
GRA    __
$p Deutsche Forschungsgemeinschaft
GRA    __
$p National MS Society
GRA    __
$p Novartis Pharma GmbH
GRA    __
$p the Research Council
GRA    __
$p Instituto de Salud Carlos III
GRA    __
$p institutional support of the hospital research
GRA    __
$p Roche
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...