-
Something wrong with this record ?
Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study
Z. Raszewski, K. Chojnacka, M. Mikulewicz
Status not-indexed Language English Country Switzerland
Document type Journal Article
NLK
Directory of Open Access Journals
from 2010
Free Medical Journals
from 2010
PubMed Central
from 2010
Europe PubMed Central
from 2010
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
PubMed
38786631
DOI
10.3390/jfb15050119
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
OBJECTIVE: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. METHODS: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. RESULTS: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0-a range conducive to remineralization. Dissolution in water occurred within 30-50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca- Biomin C 104.8 ± 15.7 mg/L; Na- Biomin F 76.30 ± 11.44 mg/L; P- Biomin C 2.623 ± 0.393 mg/L; Si- 45S5-45.15 ± 6.77mg/L, F- Biomin F- 3.256 ± 0.651mg/L; Cl- Biomin C 135.5 ± 20.3 mg/L after 45 min). CONCLUSIONS: These findings highlight the gels' capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24012898
- 003
- CZ-PrNML
- 005
- 20240726151438.0
- 007
- ta
- 008
- 240723s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/jfb15050119 $2 doi
- 035 __
- $a (PubMed)38786631
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Raszewski, Zbigniew $u SpofaDental, Markova 238, 506-01 Jicin, Czech Republic $1 https://orcid.org/0000000217353879
- 245 10
- $a Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study / $c Z. Raszewski, K. Chojnacka, M. Mikulewicz
- 520 9_
- $a OBJECTIVE: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. METHODS: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. RESULTS: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0-a range conducive to remineralization. Dissolution in water occurred within 30-50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca- Biomin C 104.8 ± 15.7 mg/L; Na- Biomin F 76.30 ± 11.44 mg/L; P- Biomin C 2.623 ± 0.393 mg/L; Si- 45S5-45.15 ± 6.77mg/L, F- Biomin F- 3.256 ± 0.651mg/L; Cl- Biomin C 135.5 ± 20.3 mg/L after 45 min). CONCLUSIONS: These findings highlight the gels' capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chojnacka, Katarzyna $u Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
- 700 1_
- $a Mikulewicz, Marcin $u Department of Dentofacial Orthopaedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland $1 https://orcid.org/0000000157540284
- 773 0_
- $w MED00184555 $t Journal of functional biomaterials $x 2079-4983 $g Roč. 15, č. 5 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38786631 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240723 $b ABA008
- 991 __
- $a 20240726151430 $b ABA008
- 999 __
- $a ok $b bmc $g 2125513 $s 1224761
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 15 $c 5 $e 20240429 $i 2079-4983 $m Journal of functional biomaterials $n J Funct Biomater $x MED00184555
- LZP __
- $a Pubmed-20240723