• Je něco špatně v tomto záznamu ?

Predictive computational models for assessing the impact of co-milling on drug dissolution

N. Pätzmann, PJ. O'Dwyer, J. Beránek, M. Kuentz, BT. Griffin

. 2024 ; 198 (-) : 106780. [pub] 20240430

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24013380

Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24013380
003      
CZ-PrNML
005      
20240905133350.0
007      
ta
008      
240725e20240430ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ejps.2024.106780 $2 doi
035    __
$a (PubMed)38697312
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Pätzmann, Nicolas $u School of Pharmacy, University College Cork, Cork, Ireland; Department Preformulation and Biopharmacy, Zentiva, k.s., Prague, Czechia
245    10
$a Predictive computational models for assessing the impact of co-milling on drug dissolution / $c N. Pätzmann, PJ. O'Dwyer, J. Beránek, M. Kuentz, BT. Griffin
520    9_
$a Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.
650    12
$a uvolňování léčiv $7 D065546
650    12
$a rozpustnost $7 D012995
650    12
$a příprava léků $x metody $7 D004339
650    _2
$a povidon $x chemie $7 D011205
650    _2
$a počítačová simulace $7 D003198
650    _2
$a léčivé přípravky $x chemie $7 D004364
650    _2
$a metoda nejmenších čtverců $7 D016018
655    _2
$a časopisecké články $7 D016428
700    1_
$a O'Dwyer, Patrick J $u School of Pharmacy, University College Cork, Cork, Ireland
700    1_
$a Beránek, Josef $u Department Preformulation and Biopharmacy, Zentiva, k.s., Prague, Czechia
700    1_
$a Kuentz, Martin $u Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
700    1_
$a Griffin, Brendan T $u School of Pharmacy, University College Cork, Cork, Ireland. Electronic address: Brendan.Griffin@ucc.ie
773    0_
$w MED00001639 $t European journal of pharmaceutical sciences $x 1879-0720 $g Roč. 198 (20240430), s. 106780
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38697312 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240725 $b ABA008
991    __
$a 20240905133344 $b ABA008
999    __
$a ok $b bmc $g 2143284 $s 1225246
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 198 $c - $d 106780 $e 20240430 $i 1879-0720 $m European journal of pharmaceutical sciences $n Eur J Pharm Sci $x MED00001639
LZP    __
$a Pubmed-20240725

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...