-
Je něco špatně v tomto záznamu ?
Blind deconvolution decreases requirements on temporal resolution of DCE-MRI: Application to 2nd generation pharmacokinetic modeling
J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- časové faktory MeSH
- kontrastní látky * farmakokinetika MeSH
- magnetická rezonanční tomografie * metody MeSH
- perfuze MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied. METHODS: The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution. RESULTS: The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data. Further increasing of the sampling intervals led to systematic distortions, such as lowering and broadening of the 1st pass peak. The resulting perfusion-parameter estimation error was below 10% for the sampling intervals up to 3 s (synthetic data), in line with the real data perfusion-parameter boxplots which remained unchanged up to the sampling interval 3.6 s. CONCLUSION: We show that use of blind deconvolution decreases the demands on temporal resolution in DCE-MRI from about 1.5 s (in case of measured arterial input functions) to 3-4 s. This can be exploited in increased spatial resolution or larger organ coverage.
Department of Biomedicine University of Bergen Jonas Lies vei 91 Bergen Norway
Department of Radiology Masaryk Memorial Cancer Institute Žlutý kopec 7 656 53 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24013743
- 003
- CZ-PrNML
- 005
- 20240905133512.0
- 007
- ta
- 008
- 240725e20240319ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mri.2024.03.019 $2 doi
- 035 __
- $a (PubMed)38508292
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Kratochvíla, Jiří $u Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic. Electronic address: kratochvila@isibrno.cz
- 245 10
- $a Blind deconvolution decreases requirements on temporal resolution of DCE-MRI: Application to 2nd generation pharmacokinetic modeling / $c J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt
- 520 9_
- $a PURPOSE: Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied. METHODS: The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution. RESULTS: The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data. Further increasing of the sampling intervals led to systematic distortions, such as lowering and broadening of the 1st pass peak. The resulting perfusion-parameter estimation error was below 10% for the sampling intervals up to 3 s (synthetic data), in line with the real data perfusion-parameter boxplots which remained unchanged up to the sampling interval 3.6 s. CONCLUSION: We show that use of blind deconvolution decreases the demands on temporal resolution in DCE-MRI from about 1.5 s (in case of measured arterial input functions) to 3-4 s. This can be exploited in increased spatial resolution or larger organ coverage.
- 650 12
- $a kontrastní látky $x farmakokinetika $7 D003287
- 650 12
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a perfuze $7 D010477
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a algoritmy $7 D000465
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jiřík, Radovan $u Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
- 700 1_
- $a Bartoš, Michal $u Czech Academy of Sciences, Institute of Information Technology and Automation, Pod Vodárenskou věží 4, 182 08 Praha 8, Czech Republic
- 700 1_
- $a Standara, Michal $u Department of Radiology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
- 700 1_
- $a Starčuk, Zenon $u Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
- 700 1_
- $a Taxt, Torfinn $u Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway
- 773 0_
- $w MED00003171 $t Magnetic resonance imaging $x 1873-5894 $g Roč. 109 (20240319), s. 238-248
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38508292 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905133506 $b ABA008
- 999 __
- $a ok $b bmc $g 2143507 $s 1225609
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 109 $c - $d 238-248 $e 20240319 $i 1873-5894 $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
- LZP __
- $a Pubmed-20240725