-
Je něco špatně v tomto záznamu ?
Efficient learning of Scale-Adaptive Nearly Affine Invariant Networks
Z. Shen, Y. Qiu, J. Liu, L. He, Z. Lin
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- neuronové sítě * MeSH
- učení * MeSH
- Publikační typ
- časopisecké články MeSH
Recent research has demonstrated the significance of incorporating invariance into neural networks. However, existing methods require direct sampling over the entire transformation set, notably computationally taxing for large groups like the affine group. In this study, we propose a more efficient approach by addressing the invariances of the subgroups within a larger group. For tackling affine invariance, we split it into the Euclidean group E(n) and uni-axial scaling group US(n), handling invariance individually. We employ an E(n)-invariant model for E(n)-invariance and average model outputs over data augmented from a US(n) distribution for US(n)-invariance. Our method maintains a favorable computational complexity of O(N2) in 2D and O(N4) in 3D scenarios, in contrast to the O(N6) (2D) and O(N12) (3D) complexities of averaged models. Crucially, the scale range for augmentation adapts during training to avoid excessive scale invariance. This is the first time nearly exact affine invariance is incorporated into neural networks without directly sampling the entire group. Extensive experiments unequivocally confirm its superiority, achieving new state-of-the-art results in affNIST and SIM2MNIST classifications while consuming less than 15% of inference time and fewer computational resources and model parameters compared to averaged models.
Baidu Inc Beijing 100871 China
Institute for Artificial Intelligence Peking University Peking 100871 China
Peng Cheng Laboratory Shenzhen 518000 China
School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China
Shenzhen Research Institute of Big Data Shenzhen 518172 China
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24013751
- 003
- CZ-PrNML
- 005
- 20240905134042.0
- 007
- ta
- 008
- 240725e20240311xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2024.106229 $2 doi
- 035 __
- $a (PubMed)38490114
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Shen, Zhengyang $u Baidu Inc, Beijing, 100871, China
- 245 10
- $a Efficient learning of Scale-Adaptive Nearly Affine Invariant Networks / $c Z. Shen, Y. Qiu, J. Liu, L. He, Z. Lin
- 520 9_
- $a Recent research has demonstrated the significance of incorporating invariance into neural networks. However, existing methods require direct sampling over the entire transformation set, notably computationally taxing for large groups like the affine group. In this study, we propose a more efficient approach by addressing the invariances of the subgroups within a larger group. For tackling affine invariance, we split it into the Euclidean group E(n) and uni-axial scaling group US(n), handling invariance individually. We employ an E(n)-invariant model for E(n)-invariance and average model outputs over data augmented from a US(n) distribution for US(n)-invariance. Our method maintains a favorable computational complexity of O(N2) in 2D and O(N4) in 3D scenarios, in contrast to the O(N6) (2D) and O(N12) (3D) complexities of averaged models. Crucially, the scale range for augmentation adapts during training to avoid excessive scale invariance. This is the first time nearly exact affine invariance is incorporated into neural networks without directly sampling the entire group. Extensive experiments unequivocally confirm its superiority, achieving new state-of-the-art results in affNIST and SIM2MNIST classifications while consuming less than 15% of inference time and fewer computational resources and model parameters compared to averaged models.
- 650 12
- $a neuronové sítě $7 D016571
- 650 12
- $a učení $7 D007858
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Qiu, Yeqing $u Shenzhen Research Institute of Big Data, Shenzhen, 518172, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- 700 1_
- $a Liu, Jialun $u Baidu Inc, Beijing, 100871, China
- 700 1_
- $a He, Lingshen $u National Key Lab of General Artificial Intelligence, School of Intelligence Science and Technology, Peking University, Beijing, 100871, China
- 700 1_
- $a Lin, Zhouchen $u National Key Lab of General Artificial Intelligence, School of Intelligence Science and Technology, Peking University, Beijing, 100871, China; Institute for Artificial Intelligence, Peking University, Peking, 100871, China; Peng Cheng Laboratory, Shenzhen, 518000, China. Electronic address: zlin@pku.edu.cn
- 773 0_
- $w MED00011811 $t Neural networks $x 1879-2782 $g Roč. 174 (20240311), s. 106229
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38490114 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905134036 $b ABA008
- 999 __
- $a ok $b bmc $g 2143513 $s 1225617
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 174 $c - $d 106229 $e 20240311 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20240725