-
Je něco špatně v tomto záznamu ?
Cell Tree Rings: the structure of somatic evolution as a human aging timer
A. Csordas, B. Sipos, T. Kurucova, A. Volfova, F. Zamola, B. Tichy, DG. Hicks
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2017
PubMed Central
od 2017
Europe PubMed Central
od 2017
- MeSH
- biologické markery MeSH
- dlouhověkost MeSH
- fylogeneze MeSH
- leukocyty mononukleární * MeSH
- lidé MeSH
- stárnutí * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
AgeCurve Limited Cambridge CB2 1SD UK
CEITEC Central European Institute of Technology Masaryk University 62500 Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czechia
Doctoral School of Clinical Medicine University of Szeged Szeged H 6720 Hungary
HealthyLongevity clinic Inc 540 University Ave Palo Alto CA 94301 USA
Swinburne University of Technology Hawthorn VIC 3122 Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24013802
- 003
- CZ-PrNML
- 005
- 20240905134401.0
- 007
- ta
- 008
- 240725s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11357-023-01053-4 $2 doi
- 035 __
- $a (PubMed)38172489
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Csordas, Attila $u AgeCurve Limited, Cambridge, CB2 1SD, UK. attila@agecurve.co.uk $u Doctoral School of Clinical Medicine, University of Szeged, Szeged, H-6720, Hungary. attila@agecurve.co.uk $1 https://orcid.org/0000000335761793
- 245 10
- $a Cell Tree Rings: the structure of somatic evolution as a human aging timer / $c A. Csordas, B. Sipos, T. Kurucova, A. Volfova, F. Zamola, B. Tichy, DG. Hicks
- 520 9_
- $a Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a leukocyty mononukleární $7 D007963
- 650 _2
- $a fylogeneze $7 D010802
- 650 12
- $a stárnutí $x genetika $7 D000375
- 650 _2
- $a dlouhověkost $7 D008136
- 650 _2
- $a biologické markery $7 D015415
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sipos, Botond $u AgeCurve Limited, Cambridge, CB2 1SD, UK
- 700 1_
- $a Kurucova, Terezia $u CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia $u Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czechia
- 700 1_
- $a Volfova, Andrea $u HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
- 700 1_
- $a Zamola, Frantisek $u HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
- 700 1_
- $a Tichy, Boris $u CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia
- 700 1_
- $a Hicks, Damien G $u AgeCurve Limited, Cambridge, CB2 1SD, UK $u Swinburne University of Technology, Hawthorn, VIC, 3122, Australia $1 https://orcid.org/0000000183229983
- 773 0_
- $w MED00207797 $t GeroScience $x 2509-2723 $g Roč. 46, č. 3 (2024), s. 3005-3019
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38172489 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905134354 $b ABA008
- 999 __
- $a ok $b bmc $g 2143548 $s 1225668
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 46 $c 3 $d 3005-3019 $e 20240104 $i 2509-2723 $m GeroScience $n Geroscience $x MED00207797
- LZP __
- $a Pubmed-20240725