-
Something wrong with this record ?
Astroglial gap junctions strengthen hippocampal network activity by sustaining afterhyperpolarization via KCNQ channels
E. Dossi, L. Zonca, H. Pivonkova, G. Milior, J. Moulard, L. Vargova, O. Chever, D. Holcman, N. Rouach
Language English Country United States
Document type Journal Article
NLK
Cell Press Free Archives
from 2012
Directory of Open Access Journals
from 2012
Free Medical Journals
from 2012
Freely Accessible Science Journals
from 2012-01-26
Open Access Digital Library
from 2012-01-26
Open Access Digital Library
from 2012-01-01
- MeSH
- Action Potentials physiology MeSH
- Astrocytes * metabolism MeSH
- Potassium * metabolism MeSH
- KCNQ Potassium Channels * metabolism genetics MeSH
- Hippocampus * metabolism MeSH
- Connexins metabolism genetics MeSH
- Gap Junctions * metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Nerve Net metabolism MeSH
- Neurons metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.
ED386 Ecole Doctorale de Sciences Mathématiques Paris Centre Paris France
Faculty of Medicine Charles University Prague Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24013855
- 003
- CZ-PrNML
- 005
- 20240905134248.0
- 007
- ta
- 008
- 240725s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.celrep.2024.114158 $2 doi
- 035 __
- $a (PubMed)38722742
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dossi, Elena $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- 245 10
- $a Astroglial gap junctions strengthen hippocampal network activity by sustaining afterhyperpolarization via KCNQ channels / $c E. Dossi, L. Zonca, H. Pivonkova, G. Milior, J. Moulard, L. Vargova, O. Chever, D. Holcman, N. Rouach
- 520 9_
- $a Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 12
- $a astrocyty $x metabolismus $7 D001253
- 650 _2
- $a konexiny $x metabolismus $x genetika $7 D017630
- 650 12
- $a mezerový spoj $x metabolismus $7 D017629
- 650 12
- $a hipokampus $x metabolismus $7 D006624
- 650 12
- $a draslíkové kanály KCNQ $x metabolismus $x genetika $7 D051656
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a nervová síť $x metabolismus $7 D009415
- 650 _2
- $a neurony $x metabolismus $7 D009474
- 650 12
- $a draslík $x metabolismus $7 D011188
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zonca, Lou $u Group of Data Modeling and Computational Biology, Institute of Biology, Ecole Normale Superieure, CNRS, INSERM, Université PSL, Paris, France; ED386, Ecole Doctorale de Sciences Mathématiques Paris Centre, Paris, France
- 700 1_
- $a Pivonkova, Helena $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; 2(nd) Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Milior, Giampaolo $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- 700 1_
- $a Moulard, Julien $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- 700 1_
- $a Vargova, Lydia $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; 2(nd) Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Chever, Oana $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- 700 1_
- $a Holcman, David $u Group of Data Modeling and Computational Biology, Institute of Biology, Ecole Normale Superieure, CNRS, INSERM, Université PSL, Paris, France. Electronic address: david.holcman@ens.fr
- 700 1_
- $a Rouach, Nathalie $u Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France. Electronic address: nathalie.rouach@college-de-france.fr
- 773 0_
- $w MED00188029 $t Cell reports $x 2211-1247 $g Roč. 43, č. 5 (2024), s. 114158
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38722742 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905134241 $b ABA008
- 999 __
- $a ok $b bmc $g 2143580 $s 1225721
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 43 $c 5 $d 114158 $e 20240508 $i 2211-1247 $m Cell reports $n Cell Rep $x MED00188029
- LZP __
- $a Pubmed-20240725